Manzhou Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864988/publications.pdf

Version: 2024-02-01

285 papers 18,854 citations

63 h-index 127 g-index

290 all docs

290 docs citations

times ranked

290

9484 citing authors

#	Article	IF	CITATIONS
1	Correlating the Crystal Structure of A Thiol-Protected Au ₂₅ Cluster and Optical Properties. Journal of the American Chemical Society, 2008, 130, 5883-5885.	6.6	2,014
2	Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622.	23.0	849
3	Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of Chemical Research, 2012, 45, 1470-1479.	7.6	837
4	Tailoring the photoluminescence of atomically precise nanoclusters. Chemical Society Reviews, 2019, 48, 2422-2457.	18.7	655
5	Kinetically Controlled, High-Yield Synthesis of Au ₂₅ Clusters. Journal of the American Chemical Society, 2008, 130, 1138-1139.	6.6	538
6	A 200â€fold Quantum Yield Boost in the Photoluminescence of Silverâ€Doped Ag _{<i>x</i>}	7.2	501
7	Conversion of Anionic [Au ₂₅ (SCH ₂ CH ₂ Ph) ₁₈] ^{â°°} Cluster to Charge Neutral Cluster via Air Oxidation. Journal of Physical Chemistry C, 2008, 112, 14221-14224.	1.5	414
8	Reversible Switching of Magnetism in Thiolate-Protected Au ₂₅ Superatoms. Journal of the American Chemical Society, 2009, 131, 2490-2492.	6.6	414
9	Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society Reviews, 2020, 49, 6443-6514.	18.7	407
10	Size Focusing: A Methodology for Synthesizing Atomically Precise Gold Nanoclusters. Journal of Physical Chemistry Letters, 2010, 1, 2903-2910.	2.1	402
11	Metal Exchange Method Using Au ₂₅ Nanoclusters as Templates for Alloy Nanoclusters with Atomic Precision. Journal of the American Chemical Society, 2015, 137, 4018-4021.	6.6	266
12	Au ₂₅ (SR) ₁₈ : the captain of the great nanocluster ship. Nanoscale, 2018, 10, 10758-10834.	2.8	253
13	Thiolateâ€Protected Au _{<i>n</i>} Nanoclusters as Catalysts for Selective Oxidation and Hydrogenation Processes. Advanced Materials, 2010, 22, 1915-1920.	11.1	228
14	The Structure and Optical Properties of the [Au ₁₈ (SR) ₁₄] Nanocluster. Angewandte Chemie - International Edition, 2015, 54, 3145-3149.	7.2	205
15	Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nature Communications, 2016, 7, 13240.	5.8	205
16	Bimetallic Au ₂ Cu ₆ Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species. Angewandte Chemie - International Edition, 2016, 55, 3611-3614.	7.2	200
17	Thiolate-Protected Au ₂₀ Clusters with a Large Energy Gap of 2.1 eV. Journal of the American Chemical Society, 2009, 131, 7220-7221.	6.6	188
18	The photoluminescent metal nanoclusters with atomic precision. Coordination Chemistry Reviews, 2019, 378, 595-617.	9.5	178

#	Article	IF	CITATIONS
19	Crystal Structure and Optical Properties of the [Ag ₆₂ 5412(SBu ^t) ₃₂] ²⁺ Nanocluster with a Complete Face-Centered Cubic Kernel. Journal of the American Chemical Society, 2014, 136, 15559-15565.	6.6	176
20	Customizing the Structure, Composition, and Properties of Alloy Nanoclusters by Metal Exchange. Accounts of Chemical Research, 2018, 51, 2784-2792.	7.6	175
21	Crystal Structure of Selenolate-Protected Au ₂₄ (SeR) ₂₀ Nanocluster. Journal of the American Chemical Society, 2014, 136, 2963-2965.	6.6	171
22	Facile, Large-Scale Synthesis of Dodecanethiol-Stabilized Au ₃₈ Clusters. Journal of Physical Chemistry A, 2009, 113, 4281-4284.	1.1	167
23	Chiral Au ₂₅ Nanospheres and Nanorods: Synthesis and Insight into the Origin of Chirality. Nano Letters, 2011, 11, 3963-3969.	4.5	167
24	Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Science Advances, 2017, 3, e1700956.	4.7	167
25	Total Structure Determination of Au ₂₁ (S-Adm) ₁₅ and Geometrical/Electronic Structure Evolution of Thiolated Gold Nanoclusters. Journal of the American Chemical Society, 2016, 138, 10754-10757.	6.6	160
26	Atomically Precise Dinuclear Site Active toward Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 11317-11324.	6.6	153
27	Total structure determination of surface doping [Ag ₄₆ Au ₂₄ (SR) ₃₂](BPh ₄) ₂ nanocluster and its structure-related catalytic property. Science Advances, 2015, 1, e1500441.	4.7	146
28	Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au ₂₅ @ZIF-67. Journal of the American Chemical Society, 2020, 142, 4126-4130.	6.6	141
29	The Magic Au ₆₀ Nanocluster: A New Clusterâ€Assembled Material with Five Au ₁₃ Building Blocks. Angewandte Chemie - International Edition, 2015, 54, 8430-8434.	7.2	139
30	One-Pot Synthesis of Robust Core/Shell Gold Nanoparticles. Journal of the American Chemical Society, 2008, 130, 12852-12853.	6.6	138
31	Ag ₅₀ (Dppm) ₆ (SR) ₃₀ and Its Homologue Au _{<i>x</i>} Ag _{50–<i>x</i>} (Dppm) ₆ (SR) ₃₀ Alloy Nanocluster: Seeded Growth, Structure Determination, and Differences in Properties. Journal of the American Chemical Society, 2017, 139, 1618-1624.	6.6	138
32	Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chemistry of Materials, 2019, 31, 9939-9969.	3.2	130
33	Intra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclusters. Coordination Chemistry Reviews, 2019, 394, 1-38.	9.5	129
34	Observation of a new type of aggregation-induced emission in nanoclusters. Chemical Science, 2018, 9, 3062-3068.	3.7	118
35	Thiolate-Protected Au ₂₄ (SC ₂ H ₄ Ph) ₂₀ Nanoclusters: Superatoms or Not?. Journal of Physical Chemistry Letters, 2010, 1, 1003-1007.	2.1	114
36	Near Infrared Electrochemiluminescence of Rod-Shape 25-Atom AuAg Nanoclusters That Is Hundreds-Fold Stronger Than That of Ru(bpy) ₃ Standard. Journal of the American Chemical Society, 2019, 141, 9603-9609.	6.6	108

#	Article	IF	CITATIONS
37	6-Substituted quinoline-based ratiometric two-photon fluorescent probes for biological Zn2+ detection. Chemical Communications, 2012, 48, 4196.	2.2	106
38	The tetrahedral structure and luminescence properties of Bi-metallic Pt ₁ Ag ₂₈ (SR) ₁₈ (PPh ₃) ₄ nanocluster. Chemical Science, 2017, 8, 2581-2587.	3.7	105
39	A Robust and Efficient Pd ₃ Cluster Catalyst for the Suzuki Reaction and Its Odd Mechanism. ACS Catalysis, 2017, 7, 1860-1867.	5.5	99
40	Conversion of Polydisperse Au Nanoparticles into Monodisperse Au ₂₅ Nanorods and Nanospheres. Journal of Physical Chemistry C, 2009, 113, 17599-17603.	1.5	97
41	Crystal structure of Au ₂₅ (SePh) ₁₈ nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale, 2014, 6, 13977-13985.	2.8	97
42	Chirality in Gold Nanoclusters Probed by NMR Spectroscopy. ACS Nano, 2011, 5, 8935-8942.	7.3	93
43	A mitochondria-targeted two-photon fluorescent probe for highly selective and rapid detection of hypochlorite and its bio-imaging in living cells. Sensors and Actuators B: Chemical, 2016, 222, 483-491.	4.0	90
44	In Situ Two-Phase Ligand Exchange: A New Method for the Synthesis of Alloy Nanoclusters with Precise Atomic Structures. Journal of the American Chemical Society, 2017, 139, 5668-5671.	6.6	90
45	Ultrabright Au@Cu ₁₄ nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Science Advances, 2021, 7, .	4.7	89
46	Rational construction of a library of M $<$ sub $>$ 29 $<$ /sub $>$ nanoclusters from monometallic to tetrametallic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18834-18840.	3.3	86
47	A two-photon fluorescent probe for real-time monitoring of autophagy by ultrasensitive detection of the change in lysosomal polarity. Chemical Communications, 2017, 53, 3645-3648.	2.2	85
48	Ligand-exchange synthesis of selenophenolate-capped Au25 nanoclusters. Nanoscale, 2012, 4, 4161.	2.8	82
49	A naked-eye rhodamine-based fluorescent probe for Fe(III) and its application in living cells. Tetrahedron Letters, 2011, 52, 2840-2843.	0.7	81
50	Total Structure Determination of Au ₁₆ (S-Adm) ₁₂ and Cd ₁ Au ₁₄ (S <i>t</i> Bu) ₁₂ and Implications for the Structure of Au ₁₅ (SR) ₁₃ . Journal of the American Chemical Society, 2018, 140, 10988-10994.	6.6	81
51	A Unique Pair: Ag ₄₀ and Ag ₄₆ Nanoclusters with the Same Surface but Different Cores for Structure–Property Correlation. Journal of the American Chemical Society, 2018, 140, 15582-15585.	6.6	80
52	Assembly of the Thiolated [Au ₁ Ag ₂₂ (Sâ€Adm) ₁₂] ³⁺ Superatom Complex into a Framework Material through Direct Linkage by SbF ₆ ^{â°'} Anions. Angewandte Chemie - International Edition, 2020, 59, 7542-7547.	7.2	79
53	Shuttling single metal atom into and out of a metal nanoparticle. Nature Communications, 2017, 8, 848.	5.8	77
54	Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale, 2018, 10, 10166-10172.	2.8	76

#	Article	IF	CITATIONS
55	Ultrafast Relaxation Dynamics of Luminescent Rod-Shaped, Silver-Doped Ag _{<i>x</i>} Au _{25–<i>x</i>} Clusters. Journal of Physical Chemistry C, 2015, 119, 18790-18797.	1.5	75
56	Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Research, 2014, 7, 1337-1343.	5.8	74
57	Size-confined growth of atom-precise nanoclusters in metal–organic frameworks and their catalytic applications. Nanoscale, 2016, 8, 1407-1412.	2.8	74
58	Electron Transfer between [Au ₂₅ (SC ₂ H ₄ Ph) ₁₈] ^{â^'} TOA ⁺ and Oxoammonium Cations. Journal of Physical Chemistry Letters, 2011, 2, 2104-2109.	2.1	72
59	Large-Scale Synthesis, Crystal Structure, and Optical Properties of the Ag ₁₄₆ Br ₂ (SR) ₈₀ Nanocluster. ACS Nano, 2018, 12, 9318-9325.	7.3	72
60	Shapeâ€Controlled Synthesis of Trimetallic Nanoclusters: Structure Elucidation and Properties Investigation. Chemistry - A European Journal, 2016, 22, 17145-17150.	1.7	67
61	Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chemical Science, 2019, 10, 8685-8693.	3.7	65
62	A two-photon fluorescent probe for biological Cu (\hat{a} ;) and PPi detection in aqueous solution and in vivo. Biosensors and Bioelectronics, 2017, 90, 276-282.	5.3	64
63	A ratiometric two-photon fluorescent probe for hydrazine and its applications. Sensors and Actuators B: Chemical, 2015, 220, 1338-1345.	4.0	63
64	X-Ray crystal structure, and optical and electrochemical properties of the Au ₁₅ Ag ₃ (SC ₆ H ₁₁) ₁₄ nanocluster with a core–shell structure. Nanoscale, 2015, 7, 18278-18283.	2.8	62
65	Design of an ultrasmall Au nanocluster–CeO2 mesoporous nanocomposite catalyst for nitrobenzene reduction. Nanoscale, 2013, 5, 7622.	2.8	61
66	Intramolecular Charge Transfer and Solvation Dynamics of Thiolate-Protected Au ₂₀ (SR) ₁₆ Clusters Studied by Ultrafast Measurement. Journal of Physical Chemistry A, 2013, 117, 10294-10303.	1.1	60
67	A carbazole-based "turn-on―two-photon fluorescent probe for biological Cu2+ detection vis Cu2+-promoted hydrolysis. Dyes and Pigments, 2016, 125, 185-191.	2.0	60
68	Two-Photon Fluorescent Probes for Biological Mg ²⁺ Detection Based on 7-Substituted Coumarin. Journal of Organic Chemistry, 2015, 80, 4306-4312.	1.7	59
69	Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale, 2013, 5, 1176.	2.8	58
70	Pd–Ni Alloy Nanoparticles as Effective Catalysts for Miyaura–Heck Coupling Reactions. Journal of Physical Chemistry C, 2015, 119, 11511-11515.	1.5	58
71	Litchi-like Fe ₃ O ₄ @Fe-MOF capped with HAp gatekeepers for pH-triggered drug release and anticancer effect. Journal of Materials Chemistry B, 2017, 5, 8600-8606.	2.9	58
72	Au25 Clusters as Electron-Transfer Catalysts Induced the Intramolecular Cascade Reaction of 2-nitrobenzonitrile. Scientific Reports, 2013, 3, 3214.	1.6	57

#	Article	IF	Citations
73	Chiral 38â€Goldâ€Atom Nanoclusters: Synthesis and Chiroptical Properties. Small, 2014, 10, 1008-1014.	5.2	56
74	How a Single Electron Affects the Properties of the "Non-Superatom―Au ₂₅ Nanoclusters. Chemistry of Materials, 2016, 28, 2609-2617.	3.2	56
75	Rational encapsulation of atomically precise nanoclusters into metal–organic frameworks by electrostatic attraction for CO ₂ conversion. Journal of Materials Chemistry A, 2018, 6, 15371-15376.	5.2	56
76	Free Valence Electron Centralization Strategy for Preparing Ultrastable Nanoclusters and Their Catalytic Application. Inorganic Chemistry, 2019, 58, 11000-11009.	1.9	56
77	A metal exchange method for thiolate-protected tri-metal $M < sub>1 < /sub>Ag < sub>x < /sub>Au < sub>24a^'x < /sub>(SR) < sub>18 < /sub> < sup>0 < /sup>(M = Cd/Hg) nanoclusters. Nanoscale, 2015, 7, 10005-10007.$	2.8	55
78	A New Crystal Structure of Au ₃₆ with a Au ₁₄ Kernel Cocapped by Thiolate and Chloride. Journal of the American Chemical Society, 2015, 137, 10033-10035.	6.6	54
79	Mild activation of CeO ₂ -supported gold nanoclusters and insight into the catalytic behavior in CO oxidation. Nanoscale, 2016, 8, 2378-2385.	2.8	54
80	Multi-ligand-directed synthesis of chiral silver nanoclusters. Nanoscale, 2017, 9, 16800-16805.	2.8	54
81	Exposing the Delocalized Cuâ^'S Ï€ Bonds on the Au ₂₄ Cu ₆ (SPh <i>t</i> Bu) ₂₂ Nanocluster and Its Application in Ringâ€Opening Reactions. Angewandte Chemie - International Edition, 2019, 58, 15671-15674.	7.2	54
82	A rhodamine-based fluorescent probe for detecting Hg2+ in a fully aqueous environment. Dalton Transactions, 2013, 42, 14819.	1.6	48
83	Cyclic Pt ₃ Ag ₃₃ and Pt ₃ Au ₁₂ Ag ₂₁ nanoclusters with M ₁₃ icosahedra as building-blocks. Chemical Communications, 2018, 54, 12077-12080.	2.2	48
84	Metal Nanoclusters Stabilized by Selenol Ligands. Small, 2019, 15, e1902703.	5.2	48
85	Structure and Electronic Structure Evolution of Thiolate-Protected Gold Nanoclusters Containing Quasi Face-Centered-Cubic Kernels. Journal of Physical Chemistry C, 2018, 122, 14898-14907.	1.5	47
86	A quinoline based fluorescent probe that can distinguish zinc(II) from cadmium(II) in water. Tetrahedron Letters, 2013, 54, 1125-1128.	0.7	46
87	Unexpected reactivity of Au25(SCH2CH2Ph)18 nanoclusters with salts. Nanoscale, 2011, 3, 1703.	2.8	45
88	Sonogashira cross-coupling on the Au(1 1 1) and Au(1 0 0) facets of gold nanorod catalysts: Experimental and computational investigation. Journal of Catalysis, 2015, 330, 354-361.	3.1	45
89	Isomerism in Au–Ag Alloy Nanoclusters: Structure Determination and Enantioseparation of [Au ₉ Ag ₁₂ (SR) ₄ (dppm) ₆ X ₆ }(sub>3+. Inorganic Chemistry, 2018, 57, 5114-5119.	1.9	45
90	Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au ₄ 6€"Ï€-Alkyne Intermediate. Journal of the American Chemical Society, 2021, 143, 1768-1772.	6.6	45

#	Article	IF	CITATIONS
91	Ligand Modification of Au ₂₅ Nanoclusters for Near-Infrared Photocatalytic Oxidative Functionalization. Journal of the American Chemical Society, 2022, 144, 3787-3792.	6.6	45
92	One-phase controlled synthesis of Au ₂₅ nanospheres and nanorods from 1.3 nm Au : PPh ₃ nanoparticles: the ligand effects. Nanoscale, 2015, 7, 13663-13670.	2.8	44
93	Bimetallic Au ₂ Cu ₆ Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species. Angewandte Chemie, 2016, 128, 3675-3678.	1.6	44
94	Crystal Structures of Two New Goldâ€"Copper Bimetallic Nanoclusters: Cu _{<i>x</i>} Au _{25â€"<i>x</i>} (PPh ₃) ₁₀ (PhC ₂ H <and cu<sub="">3Au₃₄(PPh₃)₁₃(csup>tBuPhCH₂S)</and>	1.9	44
95	Inorganic Chemistry, 2017, 56, 1771-1774. The Structure and Optical Properties of the [Au ₁₈ (SR) ₁₄] Nanocluster. Angewandte Chemie, 2015, 127, 3188-3192.	1.6	43
96	Aggregationâ€Induced Emission (AIE) in Agâ^'Au Bimetallic Nanocluster. Chemistry - A European Journal, 2018, 24, 3712-3715.	1.7	43
97	Combining the Single-Atom Engineering and Ligand-Exchange Strategies: Obtaining the Single-Heteroatom-Doped Au ₁₆ Ag ₁ (S-Adm) ₁₃ Nanocluster with Atomically Precise Structure. Inorganic Chemistry, 2018, 57, 335-342.	1.9	43
98	Bonding of Two 8â€Electron Superatom Clusters. Angewandte Chemie - International Edition, 2018, 57, 16768-16772.	7.2	43
99	Core–Shell FeCo Prussian Blue Analogue/Ni(OH) ₂ Derived Porous Ternary Transition Metal Phosphides Connected by Graphene for Effectively Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 13523-13531.	3.2	43
100	A simple model for understanding the fluorescence behavior of Au25 nanoclusters. Nanoscale, 2014, 6, 5777.	2.8	42
101	Heteroatom Effects on the Optical and Electrochemical Properties of Ag ₂₅ (SR) ₁₈ and Its Dopants. ChemElectroChem, 2016, 3, 1261-1265.	1.7	42
102	A mitochondria-targeted ratiometric two-photon fluorescent probe for biological zinc ions detection. Biosensors and Bioelectronics, 2016, 77, 921-927.	5. 3	42
103	Structural Isomerism in Atomically Precise Nanoclusters. Chemistry of Materials, 2021, 33, 39-62.	3.2	42
104	A ratiometric two-photon fluorescent probe for cysteine and homocysteine in living cells. Sensors and Actuators B: Chemical, 2014, 201, 520-525.	4.0	41
105	A TICT based two-photon fluorescent probe for cysteine and homocysteine in living cells. Sensors and Actuators B: Chemical, 2016, 231, 285-292.	4.0	41
106	Fe ₃ O ₄ @MnO ₂ @PPy nanocomposites overcome hypoxia: magnetic-targeting-assisted controlled chemotherapy and enhanced photodynamic/photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 6848-6857.	2.9	41
107	Immobilization of functional nano-objects in living engineered bacterial biofilms for catalytic applications. National Science Review, 2019, 6, 929-943.	4.6	41
108	Nanocluster growth ⟨i⟩via⟨ i⟩ "graft-onto― effects on geometric structures and optical properties. Chemical Science, 2020, 11, 1691-1697.	3.7	41

#	Article	IF	CITATIONS
109	A two-photon fluorescent probe for detecting endogenous hypochlorite in living cells. Dalton Transactions, 2015, 44, 6613-6619.	1.6	40
110	Thiol-Induced Synthesis of Phosphine-Protected Gold Nanoclusters with Atomic Precision and Controlling the Structure by Ligand/Metal Engineering. Inorganic Chemistry, 2017, 56, 11151-11159.	1.9	40
111	Synthesis and Structure of Self-Assembled Pd ₂ Au ₂₃ (PPh ₃) ₁₀ Br ₇ Nanocluster: Exploiting Factors That Promote Assembly of Icosahedral Nano-Building-Blocks. Chemistry of Materials. 2017. 29. 6856-6862.	3.2	40
112	Enhanced microwave absorption from the magnetic-dielectric interface: A hybrid rGO@Ni-doped-MoS2. Materials Research Bulletin, 2020, 130, 110943.	2.7	40
113	Atomically resolved Au52Cu72(SR)55 nanoalloy reveals Marks decahedron truncation and Penrose tiling surface. Nature Communications, 2020, 11, 478.	5.8	39
114	Gram-Scale Preparation of Stable Hydride M@Cu $<$ sub $>$ 24 $<$ /sub $>$ (M = Au/Cu) Nanoclusters. Journal of Physical Chemistry Letters, 2019, 10, 6124-6128.	2.1	38
115	Rhombicuboctahedral Ag ₁₀₀ : Four‣ayered Octahedral Silver Nanocluster Adopting the Russian Nesting Doll Model. Angewandte Chemie - International Edition, 2020, 59, 17234-17238.	7.2	38
116	Hierarchical structural complexity in atomically precise nanocluster frameworks. National Science Review, 2021, 8, nwaa077.	4.6	38
117	A carbazole-based mitochondria-targeted two-photon fluorescent probe for gold ions and its application in living cell imaging. Sensors and Actuators B: Chemical, 2016, 225, 572-578.	4.0	37
118	De-assembly of assembled Pt $<$ sub $>$ 1 $<$ /sub $>$ Ag $<$ sub $>$ 12 $<$ /sub $>$ units: tailoring the photoluminescence of atomically precise nanoclusters. Chemical Communications, 2017, 53, 12564-12567.	2.2	37
119	Design of atomically precise Au ₂ Pd ₆ nanoclusters for boosting electrocatalytic hydrogen evolution on MoS ₂ . Inorganic Chemistry Frontiers, 2018, 5, 2948-2954.	3.0	37
120	Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chemistry of Materials, 2019, 31, 4945-4952.	3.2	36
121	Porous transition metal phosphides derived from Fe-based Prussian blue analogue for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 814, 152332.	2.8	36
122	A mitochondria-targeted colorimetric and two-photon fluorescent probe for biological SO 2 derivatives in living cells. Dyes and Pigments, 2016, 134, 297-305.	2.0	35
123	Two Electron Reduction: From Quantum Dots to Metal Nanoclusters. Chemistry of Materials, 2016, 28, 7905-7911.	3.2	35
124	Modulating photo-luminescence of Au ₂ Cu ₆ nanoclusters via ligand-engineering. RSC Advances, 2017, 7, 28606-28609.	1.7	35
125	A novel quinoline-based two-photon fluorescent probe for detecting Cd2+in vitro and in vivo. Dalton Transactions, 2012, 41, 6189.	1.6	34
126	Controlling the selectivity of catalytic oxidation of styrene over nanocluster catalysts. RSC Advances, 2016, 6, 111399-111405.	1.7	34

#	Article	IF	CITATIONS
127	Au ₁₅ Ag ₃ (SPhMe ₂) ₁₄ Nanoclusters – Crystal Structure and Insights into Ligandâ€Induced Variation. European Journal of Inorganic Chemistry, 2017, 2017, 1414-1419.	1.0	34
128	Molecular-like Transformation from PhSe-Protected Au ₂₅ to Au ₂₃ Nanocluster and Its Application. Chemistry of Materials, 2017, 29, 3055-3061.	3.2	34
129	X-ray Crystal Structure and Optical Properties of Au _{38â€"<i>x</i>} C ₆ H <s (<i="">x = 0â€"6) Alloy Nanocluster. Journal of Physical Chemistry C, 2017, 121, 21665-21669.</s>	ub ı.3 <td>b>\$)ksub>24</td>	b> \$) ksub>24
130	Switching the subcellular organelle targeting of atomically precise gold nanoclusters by modifying the capping ligand. Chemical Communications, 2018, 54, 9222-9225.	2.2	34
131	Doping Copper Atoms into the Nanocluster Kernel: Total Structure Determination of [Cu ₃₀ Ag ₆₁ (SAdm) ₃₈ S ₃](BPh ₄). Journal of Physical Chemistry Letters, 2020, 11, 2272-2276.	2.1	34
132	Optical switching and fluorescence modulation properties of photochromic dithienylethene derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 307-313.	2.0	33
133	Atomically Precise Copper Cluster with Intensely Near-Infrared Luminescence and Its Mechanism. Journal of Physical Chemistry Letters, 2020, 11, 4891-4896.	2.1	33
134	The solely motif-doped Au _{36â^'x} Ag _x (SPh-tBu) ₂₄ (x = 1â€"8) nanoclusters: X-ray crystal structure and optical properties. Nanoscale, 2016, 8, 15317-15322.	2.8	32
135	Sulfonate, sulfide and thiolate ligands into an ultrasmall nanocluster: [Ag _{40.13} Cu _{13.87} S ₁₉ (<i>t</i> BuS) ₂₀ (<i>t</i> BuS) _{3 Chemical Communications, 2018, 54, 4314-4316.}	3< /8118 p>)<	su ฆะ 12
136	Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
137	Active metal (cadmium) doping enhanced the stability of inert metal (gold) nanocluster under O2 atmosphere and the catalysis activity of benzyl alcohol oxidation. Gold Bulletin, 2015, 48, 161-167.	1.1	31
138	Improved fluorescence imaging and synergistic anticancer phototherapy of hydrosoluble gold nanoclusters assisted by a novel two-level mesoporous canal structured silica nanocarrier. Chemical Communications, 2018, 54, 2731-2734.	2.2	31
139	An Efficient Heterobimetallic Lanthanide Alkoxide Catalyst for Transamidation of Amides under Solventâ€Free Conditions. Advanced Synthesis and Catalysis, 2017, 359, 302-313.	2.1	30
140	Alloyed palladium-nickel hollow nanospheres with interatomic charge polarization for improved hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 283-292.	3.8	30
141	Single-ligand exchange on an Au–Cu bimetal nanocluster and mechanism. Nanoscale, 2018, 10, 12093-12099.	2.8	30
142	Cocrystallization of Atomically Precise Nanoclusters. , 2020, 2, 1303-1314.		29
143	Morphology and Composition Regulation of FeCoNi Prussian Blue Analogues to Advance in the Catalytic Performances of the Derivative Ternary Transitionâ€Metal Phosphides for OER. ChemCatChem, 2020, 12, 4339-4345.	1.8	29
144	Effect of Heteroatom and Charge Reconstruction in Atomically Precise Metal Nanoclusters on Electrochemical Synthesis of Ammonia. Advanced Functional Materials, 2022, 32, .	7.8	29

#	Article	IF	CITATIONS
145	In situ studies on controlling an atomically-accurate formation process of gold nanoclusters. Nanoscale, 2015, 7, 14452-14459.	2.8	27
146	Engineered Targeted Hyaluronic Acid–Glutathioneâ€Stabilized Gold Nanoclusters/Graphene Oxide–5â€Fluorouracil as a Smart Theranostic Platform for Stimulusâ€Controlled Fluorescence Imagingâ€Assisted Synergetic Chemo/Phototherapy. Chemistry - an Asian Journal, 2019, 14, 1418-1423.	1.7	27
147	4-in-1 phototheranostics: PDA@CoPA-LA nanocomposite for photothermal imaging/photothermal/in-situ O2 generation/photodynamic combination therapy. Chemical Engineering Journal, 2020, 387, 124113.	6.6	27
148	Unraveling the Nucleation Process from a Au(I)-SR Complex to Transition-Size Nanoclusters. Journal of the American Chemical Society, 2021, 143, 15224-15232.	6.6	26
149	Insight into the Geometric and Electronic Structures of Gold/Silver Superatomic Clusters Based on Icosahedron M ₁₃ Units and Their Alloys. Chemistry - an Asian Journal, 2019, 14, 3222-3231.	1.7	25
150	Light-Induced Size-Growth of Atomically Precise Nanoclusters. Langmuir, 2019, 35, 12350-12355.	1.6	25
151	The Structure of a Au ₇ Cu ₁₂ Bimetal Nanocluster and Its Strong Emission. Inorganic Chemistry, 2019, 58, 7136-7140.	1.9	25
152	A novel Zn2+ complex as the ratiometric two-photon fluorescent probe for biological Cd2+ detection. Dyes and Pigments, 2014, 101, 30-37.	2.0	24
153	Ligand-induced change of the crystal structure and enhanced stability of the Au $<$ sub $>11sub>nanocluster. RSC Advances, 2015, 5, 66879-66885.$	1.7	24
154	Valence self-regulation of sulfur in nanoclusters. Science Advances, 2019, 5, eaax7863.	4.7	24
155	Construction of a new Au ₂₇ Cd ₁ (SAdm) ₁₄ (DPPF)Cl nanocluster by surface engineering and insight into its structure–property correlation. Inorganic Chemistry Frontiers, 2021, 8, 4820-4827.	3.0	24
156	Preparation of hyperstar polymers with encapsulated Au ₂₅ (SR) ₁₈ clusters as recyclable catalysts for nitrophenol reduction. Nanoscale, 2017, 9, 3629-3636.	2.8	23
157	A pH-induced charge convertible nanocomposite as novel targeted phototherapy agent and gene carrier. Chemical Engineering Journal, 2018, 353, 350-360.	6.6	23
158	Inhomogeneous Quantized Single-Electron Charging and Electrochemical–Optical Insights on Transition-Sized Atomically Precise Gold Nanoclusters. ACS Nano, 2020, 14, 16781-16790.	7.3	23
159	Facile air oxidative induced dealloying of hierarchical branched PtCu nanodendrites with enhanced activity for hydrogen evolution. Applied Catalysis A: General, 2018, 557, 72-78.	2.2	22
160	Cancer cell specific fluorescent methionine protected gold nanoclusters for in-vitro cell imaging studies. Talanta, 2018, 188, 259-265.	2.9	22
161	New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chemical Science, 2021, 12, 3660-3667.	3.7	22

Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters Aun($n\hat{a} \in \infty = \hat{a} \in \infty = 0$). Tj ETQq0 0 0 rgBT /Overload reduction for size selective synthesis of thiolate-protected gold nanoclusters Aun($n\hat{a} \in \infty = \hat{a} \in \infty = 0$).

10

162

#	Article	IF	CITATIONS
163	Oneâ€Pot Synthesis of Phenylmethanethiolateâ€Protected Au ₂₀ (SR) ₁₆ and Au ₂₄ (SR) ₂₀ Nanoclusters and Insight into the Kinetic Control. Chemistry - an Asian Journal, 2013, 8, 2739-2745.	1.7	21
164	Catalytic Reduction by Quasiâ€Homogeneous Gold Nanoclusters in the Liquid Phase. ChemCatChem, 2015, 7, 2296-2304.	1.8	21
165	Metal synergistic effect on cluster optical properties: based on Ag ₂₅ series nanoclusters. Dalton Transactions, 2019, 48, 13190-13196.	1.6	21
166	Exposing Cu-Rich {110} Active Facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation. Nano Research, 2019, 12, 1147-1153.	5.8	21
167	Threeâ€dimensional Octameric Assembly of Icosahedral M 13 Units in [Au 8 Ag 57 (Dppp) 4 (C 6 H 11 S) 32 Cl 2]Cl and its [Au 8 Ag 55 (Dppp) 4 (C 6 H 11 S) 34][BPh 4. Angewandte Chemie - International Edition, 2020, 59, 3891-3895.	7.2	21
168	Self-assembled Au ₄ Cu ₄ /Au ₂₅ NCs@liposome tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT. Journal of Materials Chemistry B, 2021, 9, 6396-6405.	2.9	21
169	Optical Activity from Anisotropic-Nanocluster-Assembled Supercrystals in Achiral Crystallographic Point Groups. Journal of the American Chemical Society, 2022, 144, 4845-4852.	6.6	21
170	Construction and synergistic anticancer efficacy of magnetic targeting cabbage-like Fe ₃ O ₄ @MoS ₂ @ZnO drug carriers. Journal of Materials Chemistry B, 2018, 6, 3792-3799.	2.9	20
171	Enhancing Electrocatalytic Methanol Oxidation on PtCuNi Core–Shell Alloy Structures in Acid Electrolytes. Inorganic Chemistry, 2022, 61, 2612-2618.	1.9	20
172	RGO/AuNR/HA-5FU nanocomposite with multi-stage release behavior and efficient antitumor activity for synergistic therapy. Biomaterials Science, 2017, 5, 990-1000.	2.6	19
173	Structure determination of a metastable Au ₂₂ (SAdm) ₁₆ nanocluster and its spontaneous transformation into Au ₂₁ (SAdm) ₁₅ . Nanoscale, 2020, 12, 23694-23699.	2.8	19
174	Multiple Ways Realizing Chargeâ€State Transform in AuCu Bimetallic Nanoclusters with Atomic Precision. Small, 2021, 17, e1907114.	5.2	19
175	Chiral Inversion and Conservation of Clusters: A Case Study of Racemic Ag ₃₂ Cu ₁₂ Nanocluster. Inorganic Chemistry, 2021, 60, 9050-9056.	1.9	19
176	A comparison of the chiral counterion, solvent, and ligand used to induce a chiroptical response from Au25â° nanoclusters. Nanoscale, 2013, 5, 7589.	2.8	18
177	Rendering hydrophobic nanoclusters water-soluble and biocompatible. Chemical Science, 2020, 11, 4808-4816.	3.7	18
178	An effective NIR laser/tumor-microenvironment co-responsive cancer theranostic nanoplatform with multi-modal imaging and therapies. Nanoscale, 2021, 13, 10816-10828.	2.8	18
179	Design of the tumor microenvironment-multiresponsive nanoplatform for dual-targeting and photothermal imaging guided photothermal/photodynamic/chemodynamic cancer therapies with hypoxia improvement and GSH depletion. Chemical Engineering Journal, 2022, 441, 136042.	6.6	18
180	Versatile Ligand-Exchange Method for the Synthesis of Water-Soluble Monodisperse AuAg Nanoclusters for Cancer Therapy. ACS Applied Nano Materials, 2018, 1, 6773-6781.	2.4	17

#	Article	IF	Citations
181	Intramolecular Metal Exchange Reaction Promoted by Thiol Ligands. Nanomaterials, 2018, 8, 1070.	1.9	17
182	Boosting the Activity of Ligandâ€on Atomically Precise Pd ₃ Cl Cluster Catalyst by Metalâ€Support Interaction from Kinetic and Thermodynamic Aspects. Advanced Synthesis and Catalysis, 2018, 360, 4731-4743.	2.1	17
183	Total structural determination of [Au _{1 [Au₁}	2.2	17
184	Isomer Structural Transformation in Au–Cu Alloy Nanoclusters: Water Ripple‣ike Transfer of Thiol Ligands. Particle and Particle Systems Characterization, 2019, 36, 1800494.	1.2	17
185	All-thiolate-stabilized Ag42 nanocluster with a tetrahedral kernel and its transformation to an Ag61 nanocluster with a bi-tetrahedral kernel. Chemical Communications, 2020, 56, 7605-7608.	2.2	17
186	A dual-targeting Fe $3O4@C/ZnO$ -DOX-FA nanoplatform with pH-responsive drug release and synergetic chemo-photothermal antitumor in vitro and in vivo. Materials Science and Engineering C, 2021 , 118 , 111455 .	3.8	17
187	Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Science China Materials, 2021, 64, 601-610.	3.5	17
188	A GO@PLA@HA Composite Microcapsule: Its Preparation and Multistage and Controlled Drug Release. European Journal of Inorganic Chemistry, 2017, 2017, 3312-3321.	1.0	16
189	Different Types of Ligand Exchange Induced by Au Substitution in a Maintained Nanocluster Template. Inorganic Chemistry, 2020, 59, 1675-1681.	1.9	16
190	Interdependence between nanoclusters AuAg24 and Au2Ag41. Nature Communications, 2021, 12, 778.	5.8	16
191	An anti-galvanic reduction single-molecule fluorescent probe for detection of Cu(ii). RSC Advances, 2014, 4, 9680.	1.7	15
192	Noble and valuable: atomically precise gold nanoclusters. Science China Chemistry, 2016, 59, 206-208.	4.2	15
193	X-ray crystal structure and doping mechanism of bimetallic nanocluster Au _{36â^'x} Cu _x (<i>m</i> -MBT) ₂₄ (<i>x</i> = 1â€"3). Dalton Transactions, 2018, 47, 475-480.	1.6	15
194	Tailoring the structure of 32-metal-atom nanoclusters by ligands and alloying. Nano Futures, 2018, 2, 045004.	1.0	15
195	Insights into the effect of surface coordination on the structure and properties of Au ₁₃ Cu ₂ nanoclusters. Nanoscale, 2019, 11, 19393-19397.	2.8	15
196	Impact of the Selenolate Ligand on the Bonding Behavior of Au ₂₅ Nanoclusters. Journal of Physical Chemistry C, 2014, 118, 21730-21737.	1.5	14
197	Monodispersed AuPd nanoalloy: composition control synthesis and catalytic properties in the oxidative dehydrogenative coupling of aniline. Science China Chemistry, 2015, 58, 1532-1536.	4.2	14
198	Controlling the Phosphine Ligands of Pt1Ag28(S-Adm)18(PR3)4 Nanoclusters. Inorganic Chemistry, 2020, 59, 8736-8743.	1.9	14

#	Article	IF	CITATIONS
199	Reversible Cuâ€"S Motif Transformation and Au ₄ Distortion via Thiol Ligand Exchange Engineering. Journal of Physical Chemistry C, 2020, 124, 7531-7538.	1.5	14
200	Steric and Electrostatic Control of the pH-Regulated Interconversion of Au ₁₆ (SR) ₁₂ and Au ₁₈ (SR) ₁₄ (SR: Deprotonated) Tj ETQq0 0	01.19gBT /O	v £4 lock 10 ⁻
201	Surface engineering of linearly fused Au ₁₃ units using diphosphine and Cd doping. Chemical Communications, 2021, 57, 4682-4685.	2.2	14
202	Electron transfer reaction between Au25 nanocluster and phenothiazine-tetrachloro-p-benzoquinone complex. International Journal of Hydrogen Energy, 2013, 38, 16722-16726.	3.8	13
203	Au-Ag synergistic effect in CF3-ketone alkynylation catalyzed by precise nanoclusters. Journal of Catalysis, 2019, 378, 220-225.	3.1	13
204	Overall Structures of Two Metal Nanoclusters: Chloride as a Bridge Fills the Space between the Metal Core and the Metal Shell. Inorganic Chemistry, 2020, 59, 11905-11909.	1.9	13
205	Structural determination of a metastable Ag ₂₇ nanocluster and its transformations into Ag ₈ and Ag ₂₉ nanoclusters. Inorganic Chemistry Frontiers, 2021, 8, 4407-4414.	3.0	13
206	Surface environment complication makes Ag ₂₉ nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chemical Science, 2022, 13, 1382-1389.	3.7	13
207	Kinetically controlled, high-yield, direct synthesis of [Au25(SePh)18]â^'TOA+. Science China Chemistry, 2014, 57, 1218-1224.	4.2	12
208	Photoinduced Oxidation Catalysis by Au _{25â€x} Ag _x (SR) ₁₈ Nanoclusters. ChemNanoMat, 2018, 4, 482-486.	1.5	12
209	Sub-nanometer Cu(<scp>i</scp>) clusters: coordination-modulated (Se <i>vs</i> . S) atom-packing mode and emission. Dalton Transactions, 2019, 48, 13921-13924.	1.6	12
210	A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters. Nature Communications, 2021, 12, 6186.	5.8	12
211	Heterobimetallic dinuclear lanthanide alkoxide complexes as acid–base bifunctional catalysts for synthesis of carbamates under solvent-free conditions. RSC Advances, 2016, 6, 78576-78584.	1.7	11
212	Simultaneous hetero-atom doping and foreign-thiolate exchange on the Au ₂₅ (SR) ₁₈ nanocluster. Dalton Transactions, 2018, 47, 13766-13770.	1.6	11
213	A structurally precise Ag _x Au _{25â^'x} nanocluster based cancer theranostic platform with tri-targeting/ <i>in situ</i> O ₂ -generation/aggregation enhanced fluorescence imaging/photothermalâ€"photodynamic therapies. Chemical Communications, 2020, 56, 9842-9845.	2.2	11
214	Ag ₄₈ and Ag ₅₀ Nanoclusters: Toward Active-Site Tailoring of Nanocluster Surface Structures. Inorganic Chemistry, 2021, 60, 5931-5936.	1.9	11
215	[Au ₁₆ Ag ₄₃ H ₁₂ (SPhCl ₂) ₃₄] ^{5–} : An Au–Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution. Inorganic Chemistry, 2021, 60, 11640-11647.	1.9	11
216	Anisotropic Evolution of Nanoclusters from Ag ₄₀ to Ag ₄₅ : Halogen- and Defect-Induced Epitaxial Growth in Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 6654-6660.	2.1	11

#	Article	IF	CITATIONS
217	Exploiting the Fracture in Metalâ€Organic Frameworks: A General Strategy for Bifunctional Atomâ€Precise Nanocluster/ZIFâ€8(300°C) Composites. Small, 2022, 18, e2107459.	5.2	11
218	Faceâ€Centeredâ€Cubic Ag Nanoclusters: Origins and Consequences of the High Structural Regularity Elucidated by Density Functional Theory Calculations. Chemistry - A European Journal, 2019, 25, 13977-13986.	1.7	10
219	Structurally accurate lipophilic Pt1Ag28 nanoclusters based cancer theranostic micelles for dual-targeting/aggregation enhanced fluorescence imaging and photothermal/photodynamic therapies. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111346.	2.5	10
220	The Key Gold: Enhanced Platinum Catalysis for the Selective Hydrogenation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Ketone. Journal of Physical Chemistry C, 2016, 120, 12446-12451.	1.5	9
221	Template synthesis of gold nanoparticles from hyperstar polymers and exploration of their catalytic function for hydrogen evolution reaction. Polymer, 2018, 153, 331-337.	1.8	9
222	Exposing the Delocalized Cuâ^'S Ï€ Bonds on the Au 24 Cu 6 (SPh t Bu) 22 Nanocluster and Its Application in Ringâ€Opening Reactions. Angewandte Chemie, 2019, 131, 15818-15821.	1.6	9
223	Assembly of the Thiolated [Au 1 Ag 22 (Sâ€Adm) 12] 3+ Superatom Complex into a Framework Material through Direct Linkage by SbF 6 â° Anions. Angewandte Chemie, 2020, 132, 7612-7617.	1.6	9
224	Coâ€doped Pt Nanowire Networks with Clean Surfaces for Enhanced Oxygen Reduction Reactions. Chemistry - an Asian Journal, 2020, 15, 1736-1742.	1.7	9
225	Controlling the Crystallographic Packing Modes of Pt1Ag28 Nanoclusters: Effects on the Optical Properties and Nitrogen Adsorption–Desorption Performances. Inorganic Chemistry, 2021, 60, 4198-4206.	1.9	9
226	A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag ₇₀ nanocluster crystal. Nanoscale Horizons, 2021, 6, 913-917.	4.1	9
227	Cocrystallization-driven stabilization of metastable nanoclusters: a case study of Pd ₁ Au ₉ . Nanoscale, 2021, 13, 7694-7699.	2.8	9
228	Synthesis and Structure Determination of Ag-Ni Alloy Nanocluster Ag ₄ Ni ₂ (SPhMe ₂ 8(SPhMe ₂ =2,4-dimethylbenzenethiol). Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 799-804.	2.2	9
229	Atomic structure of a seed-sized gold nanoprism. Nature Communications, 2022, 13, 1235.	5.8	9
230	The Structure–Property Correlations in the Isomerism of Au 21 (SR) 15 Nanoclusters by Density Functional Theory Study. Chemistry - an Asian Journal, 2019, 14, 4303-4308.	1.7	8
231	Total Structure Determination of the Pt1 Ag9 [P(Ph-F)3]7 Cl3 Nanocluster. European Journal of Inorganic Chemistry, 2020, 2020, 590-594.	1.0	8
232	The mechanism of metal exchange in non-metallic nanoclusters. Nanoscale Advances, 2020, 2, 664-668.	2.2	8
233	AullAg6 nanocluster: Controllable preparation, structural determination, and optical property investigation. Journal of Chemical Physics, 2021, 154, 184302.	1.2	8
234	Fabrication of a Family of Atomically Precise Silver Nanoclusters via Dual-Level Kinetical Control. Chemical Science, 0, , .	3.7	8

#	Article	IF	CITATIONS
235	Secondary ligand engineering of nanoclusters: Effects on molecular structures, supramolecular aggregates, and optical properties. Aggregate, 2023, 4, .	5.2	8
236	Threeâ€dimensional Octameric Assembly of Icosahedral M 13 Units in [Au 8 Ag 57 (Dppp) 4 (C 6 H 11 S) 32 Cl 2]Cl and its [Au 8 Ag 55 (Dppp) 4 (C 6 H 11 S) 34][BPh 4. Angewandte Chemie, 2020, 132, 3919-3923.	1.6	7
237	The geometric and electronic structures of a Ag ₁₃ Cu ₁₀ (SAdm) ₁₂ X ₃ nanocluster. Dalton Transactions, 2020, 49, 17164-17168.	1.6	7
238	Redox-Induced Interconversion of Two Au ₈ Nanoclusters: the Mechanism and the Structure–Bond Dissociation Activity Correlations. Inorganic Chemistry, 2021, 60, 5724-5733.	1.9	7
239	Heterogeneous metal alloy engineering: embryonic growth of M ₁₃ icosahedra in Ag-based alloy superatomic nanoclusters. Chemical Communications, 2020, 56, 14203-14206.	2.2	7
240	A novel geometric structure of a nanocluster with an irregular kernel: Ag ₃₀ Cu ₁₄ (TPP) ₄ (SR) ₂₈ . Dalton Transactions, 2020, 49, 7684-7687.	1.6	7
241	High Yield Synthesis of Au ₂₅ Nanoclusters by Controlling the Reduction Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 1282-1285.	0.9	6
242	A pH-Sensitive Composite with Controlled Multistage Drug Release for Synergetic Photothermal Therapy and Chemotherapy. European Journal of Inorganic Chemistry, 2017, 2017, 5621-5628.	1.0	6
243	Stabilization of a new nanocomposite family by reduction of gold nanoclusters with electron-reservoir complexes. Chemical Communications, 2019, 55, 10277-10280.	2.2	6
244	Insight of the photoluminescence of atomically precise bimetallic nanoclusters with free electrons. Journal of the Chinese Chemical Society, 2020, 67, 2171-2181.	0.8	6
245	Azide-Functionalized Nanoclusters via a Ligand-Induced Rearrangement. Chemistry of Materials, 2020, 32, 6736-6743.	3.2	6
246	Siteâ€Specific Electronic Properties of [Ag ₂₅ (SR) ₁₈] ^{â^'} Nanoclusters by Xâ€Ray Spectroscopy. Small, 2021, 17, e2005162.	5.2	6
247	Aggregation of Surface Structure Induced Photoluminescence Enhancement in Atomically Precise Nanoclusters. CCS Chemistry, 2021, 3, 1929-1939.	4.6	6
248	Reversible transformation between Au ₁₄ Ag ₈ and Au ₁₄ Ag ₄ nanoclusters. Nanoscale, 2021, 13, 17162-17167.	2.8	6
249	Insight into the Effects of Chiral Diphosphine Ligands on the Structure and Optical Properties of the Au ₂₄ Cd ₂ Nanocluster. Inorganic Chemistry, 2022, 61, 6493-6499.	1.9	6
250	[Pt ₁ Ag ₃₇ (SAdm) ₂₁ (Dppp) ₃ Cl ₆] ²⁺ intercluster transformation and photochemical properties. Inorganic Chemistry Frontiers, 2022, 9, 3907-3914.	3.0	6
251	Theoretical investigations on the structure–property relationships of Au ₁₃ and Au _x M _{13â^'x} nanoclusters. RSC Advances, 2017, 7, 51538-51545.	1.7	5
252	Bonding of Two 8â€Electron Superatom Clusters. Angewandte Chemie, 2018, 130, 17010-17014.	1.6	5

#	Article	IF	CITATIONS
253	Structure and Properties of of Physical Chemistry C, 2020, 124, 21867-21873.	1.5	5
254	Polymorphism of Au ₁₁ (PR ₃) ₇ Cl ₃ clusters: understanding C–Hâ√Ï€ interaction and C–Hâ√Cl–C van der Waals interaction on cluster assembly by surface modification. RSC Advances, 2020, 10, 11493-11498.	1.7	5
255	Rhombicuboctahedral Ag ₁₀₀ : Fourâ€Layered Octahedral Silver Nanocluster Adopting the Russian Nesting Doll Model. Angewandte Chemie, 2020, 132, 17387-17391.	1.6	5
256	[Ag ₇₁ (S- ^{<i>t</i>} Bu) ₃₁ (Dppm)](SbF ₆) ₂ : an intermediate-sized metalloid silver nanocluster containing a building block of Ag ₆₄ . Chemical Communications, 2021, 57, 10383-10386.	2.2	5
257	Total structural determination of alloyed Au _{15.37} Cu _{16.63} (S-Adm) ₂₀ nanoclusters with double superatomic chains. Chemical Communications, 2021, 57, 2017-2020.	2.2	5
258	An insight, at the atomic level, into the polarization effect in controlling the morphology of metal nanoclusters. Chemical Science, 2021, 12, 11080-11088.	3.7	5
259	Rapid Conversion of a Au 9 Ag 12 into a Au x Ag 16â€x Nanocluster via Bisphosphine Ligand Engineering. Chemistry - A European Journal, 2021, 27, 17554.	1.7	5
260	An insight, at the atomic level, into the intramolecular metallophilic interaction in nanoclusters. Chemical Communications, 2022, 58, 5092-5095.	2.2	5
261	Insight into the Mechanism of Single-Metal-Atom Tailoring on the Surface of Au–Cu Alloy Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 4139-4144.	2.1	5
262	An efficient and green approach to synthesizing enamines by intermolecular hydroamination of activated alkynes. Chemical Research in Chinese Universities, 2015, 31, 212-217.	1.3	4
263	Controllable synthesis of ultra-long YCexOy:Eu3+ nanowire arrays and fluorescence activation of Ce3+. Materials Research Bulletin, 2018, 104, 44-47.	2.7	4
264	The Ligandâ€Exchange Reactions of Rodâ€Like Au 25â€n M n (M=Au, Ag, Cu, Pd, Pt) Nanoclusters with Cysteine – A Density Functional Theory Study. ChemPhysChem, 2019, 20, 1822-1829.	1.0	4
265	Unexpected Observation of Heavy Monomeric Motifs in a Basket-like Au ₂₆ Ag ₂₂ Nanocluster. Inorganic Chemistry, 2019, 58, 1724-1727.	1.9	4
266	Ligand Effect on Geometry and Electronic Structures of Face-Centered Cubic Ag ₁₄ and Ag ₂₃ Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 13421-13426.	1.5	4
267	Polystyrene Microspheres Decorated with Au ₄ Cu ₅ Nanoclusters and their Application in Catalytic Reduction of 4â€Nitrophenol. ChemistrySelect, 2021, 6, 8843-8847.	0.7	4
268	Ligand Effects on Intramolecular Configuration, Intermolecular Packing, and Optical Properties of Metal Nanoclusters. Nanomaterials, 2021, 11, 2655.	1.9	4
269	Symmetry breaking of highly symmetrical nanoclusters for triggering highly optical activity. Fundamental Research, 2024, 4, 63-68.	1.6	4
270	Fluorescence signal amplification of gold nanoclusters with silver ions. Analytical Methods, 2018, 10, 5181-5187.	1.3	3

#	Article	IF	CITATIONS
271	Cu Dopingâ€Induced Transformation from [Ag 62 S 12 (SBu t) 32] 2+ to [Ag 62â^x Cu x S 12 (SBu t) 32] 4+ Nanocluster. Chemistry - an Asian Journal, 2021, 16, 2973-2977.	1.7	3
272	A multi-responsive Au NCs@PMLE/Ca ²⁺ antitumor hydrogel formed <i>in situ</i> on the interior/surface of tumors for PT imaging-guided synergistic PTT/O ₂ -enhanced PDT effects. Nanoscale, 2022, 14, 7372-7386.	2.8	3
273	Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angewandte Chemie, 2022, 134, .	1.6	3
274	Ultrasmall Pd nanoclusters: facile synthesis and versatile catalytic application. Science China Chemistry, 2015, 58, 467-472.	4.2	2
275	The alloying-induced electrical conductivity of metal–chalcogenolate nanowires. Chemical Communications, 2021, 57, 8774-8777.	2.2	2
276	The pivotal alkyne group in the mutual size-conversion of Au9 with Au10 nanoclusters. Dalton Transactions, 2021, 50, 10113-10118.	1.6	2
277	Boosting alkaline hydrogen evolution performance with alkaline electro-activated ultrafine candied haws-shaped PtWNi nanoalloys. Dalton Transactions, 2021, 50, 11099-11105.	1.6	2
278	Atomically Precise Cu _n (n=3, 6 and 11) Nanocatalysts for Alkyneâ€Haloalkaneâ€Amine (AHA) Coupling Reaction. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
279	Structure Determination of the Cl-Enriched [Ag ₅₂ (SAdm) ₃₁ Cl ₁₃] ²⁺ Nanocluster. Inorganic Chemistry, 2021, 60, 14803-14809.	1.9	1
280	The self-assembled AgCd nanoclusters: A novel plutonium separating material. Chemical Engineering Journal, 2022, 431, 134169.	6.6	1
281	Alloy nanoclusters-synthesis methods and structural evaluation. , 2022, , 349-384.		1
282	Titelbild: Bimetallic Au ₂ Cu ₆ Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species (Angew. Chem. 11/2016). Angewandte Chemie, 2016, 128, 3577-3577.	1.6	0
283	Front Cover Picture: Boosting the Activity of Ligandâ€on Atomically Precise Pd ₃ Cl Cluster Catalyst by Metalâ€Support Interaction from Kinetic and Thermodynamic Aspects (Adv. Synth. Catal.) Tj ETQq1 1	. 02784314	- rgBT /Over
284	Photoluminescence of metal nanoclusters., 2021,,.		0
285	Regulation of Surface Structure of [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 Nanocluster via Alloying. Frontiers in Chemistry, 2021, 9, 793339.	1.8	0