Thomas S Bianchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The changing carbon cycle of the coastal ocean. Nature, 2013, 504, 61-70.	13.7	1,146
2	The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19473-19481.	3.3	603
3	Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapidbacterial metabolism. Limnology and Oceanography, 1995, 40, 1369-1380.	1.6	474
4	Large-river delta-front estuaries as natural "recorders―of global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8085-8092.	3.3	474
5	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	5.8	406
6	Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Continental Shelf Research, 2004, 24, 899-926.	0.9	339
7	The science of hypoxia in the Northern Gulf of Mexico: A review. Science of the Total Environment, 2010, 408, 1471-1484.	3.9	317
8	Cyanobacterial blooms in the Baltic Sea: Natural or humanâ€induced?. Limnology and Oceanography, 2000, 45, 716-726.	1.6	305
9	High rates of organic carbon burial in fjord sediments globally. Nature Geoscience, 2015, 8, 450-453.	5.4	295
10	Plastics in the Earth system. Science, 2021, 373, 51-55.	6.0	290
11	Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: implications for differential sedimentation and transport at the coastal margin. Marine Chemistry, 2002, 77, 211-223.	0.9	208
12	Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum. Frontiers in Marine Science, 2017, 4, .	1.2	197
13	Centers of organic carbon burial and oxidation at the land-ocean interface. Organic Geochemistry, 2018, 115, 138-155.	0.9	184
14	Temporal variability in sources of dissolved organic carbon in the lower Mississippi river. Geochimica Et Cosmochimica Acta, 2004, 68, 959-967.	1.6	178
15	lsotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments. Geochimica Et Cosmochimica Acta, 1995, 59, 625-631.	1.6	175
16	Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science, 2012, 96, 81-95.	0.9	158
17	Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Global Change Biology, 2018, 24, 2997-3009.	4.2	157
18	Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 2013, 119, 7-16.	0.9	148

#	Article	IF	CITATIONS
19	Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Analytical Chemistry, 2018, 90, 6152-6160.	3.2	140
20	Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Organic Geochemistry, 2001, 32, 543-561.	0.9	136
21	Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochimica Et Cosmochimica Acta, 2007, 71, 4425-4437.	1.6	136
22	History of Trace Metal Pollution in Sabine-Neches Estuary, Beaumont, Texas. Environmental Science & Technology, 1995, 29, 1495-1503.	4.6	135
23	Optical Proxies for Terrestrial Dissolved Organic Matter in Estuaries and Coastal Waters. Frontiers in Marine Science, 0, 2, .	1.2	114
24	Black Carbon from the Mississippi River:Â Quantities, Sources, and Potential Implications for the Global Carbon Cycle. Environmental Science & Technology, 2002, 36, 2296-2302.	4.6	112
25	Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuarine, Coastal and Shelf Science, 2007, 73, 211-222.	0.9	108
26	Fjords as Aquatic Critical Zones (ACZs). Earth-Science Reviews, 2020, 203, 103145.	4.0	104
27	Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry, 2005, 95, 283-302.	0.9	101
28	Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event. Geophysical Research Letters, 2013, 40, 116-122.	1.5	101
29	Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophysical Research Letters, 2015, 42, 5460-5467.	1.5	100
30	Biogeochemistry of Estuaries. , 2006, , .		100
31	Geochronology of sediments in the Sabine-Neches estuary, Texas, U.S.A Chemical Geology, 1995, 125, 291-306.	1.4	97
32	Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. Journal of Experimental Marine Biology and Ecology, 2000, 251, 161-183.	0.7	97
33	An organic carbon budget for the Mississippi River turbidity plume and plume contributions to air-sea CO2 fluxes and bottom water hypoxia. Estuaries and Coasts, 2006, 29, 579-597.	1.0	95
34	Enrichment and Detection of <i>Escherichia coli</i> O157:H7 from Water Samples Using an Antibody Modified Microfluidic Chip. Analytical Chemistry, 2010, 82, 2844-2849.	3.2	95
35	The reactivity of plantâ€derived organic matter and the potential importance of priming effects along the lower Amazon River. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1522-1539. –	1.3	94
36	Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico. Limnology and Oceanography, 2004, 49, 2223-2235.	1.6	92

#	Article	IF	CITATIONS
37	Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Marine Chemistry, 2012, 145-147, 37-52.	0.9	91
38	Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers. Estuaries and Coasts, 2006, 29, 427-442.	1.0	90
39	Historical trends of hypoxia in Changjiang River estuary: Applications of chemical biomarkers and microfossils. Journal of Marine Systems, 2011, 86, 57-68.	0.9	89
40	The effects of macrobenthic deposit-feeding on the degradation of chloropigments in sandy sediments. Journal of Experimental Marine Biology and Ecology, 1988, 122, 243-255.	0.7	88
41	Sources of Terrestrial Organic Carbon in the Mississippi Plume Region: Evidence for the Importance of Coastal Marsh Inputs. Aquatic Geochemistry, 2011, 17, 431-456.	1.5	87
42	Partitioning of organic matter in continental margin sediments among density fractions. Marine Chemistry, 2009, 115, 211-225.	0.9	86
43	Sources and transport of land-derived particulate and dissolved organic matter in the Gulf of Mexico (Texas shelf/slope): The use of ligninphenols and loliolides as biomarkers. Organic Geochemistry, 1997, 27, 65-78.	0.9	84
44	Phytoplankton Pigments in Baltic Sea Seston and Sediments: Seasonal Variability, Fluxes, and Transformations. Estuarine, Coastal and Shelf Science, 2002, 55, 369-383.	0.9	84
45	Dissolved Organic Carbon Cycling and Transformation. , 2011, , 7-67.		84
46	Photoâ€oxidation of dissolved organic matter in river water and its effect on trace element speciation. Limnology and Oceanography, 2006, 51, 1716-1728.	1.6	83
47	Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf. Estuarine, Coastal and Shelf Science, 2014, 144, 27-38.	0.9	82
48	Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophysical Research Letters, 2016, 43, 1149-1157.	1.5	82
49	Mechanisms of ammonia and amino acid photoproduction from aquatic humic and colloidal matter. Water Research, 2001, 35, 3688-3696.	5.3	81
50	A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: Implications for the BIT Index. Geochimica Et Cosmochimica Acta, 2012, 80, 14-29.	1.6	80
51	Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume. Estuarine, Coastal and Shelf Science, 2006, 69, 47-63.	0.9	76
52	An interlaboratory study of TEX ₈₆ and BIT analysis of sediments, extracts, and standard mixtures. Geochemistry, Geophysics, Geosystems, 2013, 14, 5263-5285.	1.0	76
53	Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation. Continental Shelf Research, 2014, 91, 1-11.	0.9	76
54	Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam. Journal of Marine Systems, 2014, 139, 409-419.	0.9	76

#	Article	IF	CITATIONS
55	Cycling of7Be and210Pb in a High DOC, Shallow, Turbid Estuary of South-east Texas. Estuarine, Coastal and Shelf Science, 1997, 45, 165-176.	0.9	74
56	Particulate and dissolved amino acids in the lower Mississippi and Pearl Rivers (USA). Marine Chemistry, 2007, 107, 214-229.	0.9	74
57	Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS) and MERIS Sensors: Case Study for the Northern Gulf of Mexico. Remote Sensing, 2013, 5, 1439-1464.	1.8	74
58	A multiproxy analysis of sedimentary organic carbon in the <scp>Changjiang Estuary</scp> and adjacent shelf. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1407-1429.	1.3	74
59	Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, U.S.A Marine Environmental Research, 2011, 72, 248-257.	1.1	72
60	Temporal variability in the composition and abundance of terrestrially-derived dissolved organic matter in the lower Mississippi and Pearl Rivers. Marine Chemistry, 2007, 103, 172-184.	0.9	71
61	An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Organic Geochemistry, 2001, 32, 1153-1167.	0.9	69
62	Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River. Geophysical Research Letters, 2007, 34, .	1.5	67
63	Organic carbon burial in fjords: Terrestrial versus marine inputs. Earth and Planetary Science Letters, 2016, 451, 41-50.	1.8	66
64	Organic Matter Sources in the Water Column and Sediments of the Hudson River Estuary: the Use of Plant Pigments as Tracers. Estuarine, Coastal and Shelf Science, 1993, 36, 359-376.	0.9	65
65	Deepwater Horizon Oil in Gulf of Mexico Waters after 2 Years: Transformation into the Dissolved Organic Matter Pool. Environmental Science & Technology, 2014, 48, 9288-9297.	4.6	65
66	Using multi-radiotracer techniques to better understand sedimentary dynamics of reworked muds in the Changjiang River estuary and inner shelf of East China Sea. Marine Geology, 2015, 370, 76-86.	0.9	65
67	The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Global Change Biology, 2017, 23, 5468-5480.	4.2	65
68	The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. Chemical Geology, 2015, 402, 52-67.	1.4	64
69	234 Th: 238 U disequilibria in the Gulf of Mexico: the importance of organic matter and particle concentration. Continental Shelf Research, 1996, 16, 353-380.	0.9	63
70	A gradient of dissolved organic carbon and lignin from Terrebonne–Timbalier Bay estuary to the Louisiana shelf (USA). Marine Chemistry, 2009, 117, 32-41.	0.9	63
71	Assessing chromophoric dissolved organic matter (CDOM) distribution, stocks, and fluxes in Apalachicola Bay using combined field, VIIRS ocean color, and model observations. Remote Sensing of Environment, 2017, 191, 359-372.	4.6	63
72	Sources of organic matter in surface sediments of the Louisiana Continental margin: Effects of major depositional/transport pathways and Hurricane Ivan. Continental Shelf Research, 2008, 28, 2472-2487.	0.9	62

#	Article	IF	CITATIONS
73	Decomposition of Hudson Estuary Macrophytes: Photosynthetic Pigment Transformations and Decay Constants. Estuaries and Coasts, 1991, 14, 65.	1.7	59
74	Terrestrially derived dissolved organic matter in the chesapeake bay and the middle atlantic bight. Geochimica Et Cosmochimica Acta, 2000, 64, 3547-3557.	1.6	59
75	The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas. Chemical Geology, 2018, 495, 104-117.	1.4	58
76	Do sediments from coastal sites accurately reflect time trends in water column phytoplankton? A test from HimmerfjÄ r den Bay (Baltic Sea proper). Limnology and Oceanography, 2002, 47, 1537-1544.	1.6	53
77	Comparison of lignin phenols and branched/isoprenoid tetraethers (BIT index) as indices of terrestrial organic matter in Doubtful Sound, Fiordland, New Zealand. Organic Geochemistry, 2010, 41, 281-290.	0.9	53
78	The importance of microalgae, bacteria and particulate organic matter in the somatic growth of <i>Hydrobia totteni</i> . Journal of Marine Research, 1984, 42, 431-443.	0.3	52
79	Ammonium Photoproduction from Aquatic Humic and Colloidal Matter. Aquatic Geochemistry, 2000, 6, 275-292.	1.5	52
80	Sources and composition of highâ€molecularâ€weight dissolved organic carbon in a southern Louisiana tidal stream (Bayou Trepagnier). Limnology and Oceanography, 2001, 46, 917-926.	1.6	52
81	An interlaboratory study of TEX ₈₆ and BIT analysis using highâ€performance liquid chromatography–mass spectrometry. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	52
82	Land use, water quality, and the history of coral assemblages at Bocas del Toro, Panamá. Marine Ecology - Progress Series, 2014, 504, 159-170.	0.9	51
83	Sources of terrigenous inputs to surface sediments of the Colville River Delta and Simpson's Lagoon, Beaufort Sea, Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 808-824.	1.3	48
84	Biogeochemical characteristics of the lower Mississippi River, USA, during June 2003. Estuaries and Coasts, 2005, 28, 664-674.	1.7	47
85	Old before your time: Ancient carbon incorporation in contemporary aquatic foodwebs. Limnology and Oceanography, 2017, 62, 1682-1700.	1.6	45
86	Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17891-17902.	3.3	45
87	Redox Effects on Organic Matter Storage in Coastal Sediments During the Holocene: A Biomarker/Proxy Perspective. Annual Review of Earth and Planetary Sciences, 2016, 44, 295-319.	4.6	44
88	Variability in the bulk composition and abundance of dissolved organic matter in the lower Mississippi and Pearl rivers. Journal of Geophysical Research, 2007, 112, .	3.3	43
89	Plant pigments as biomarkers of high-molecular-weight dissolved organic carbon. Limnology and Oceanography, 1995, 40, 422-428.	1.6	42
90	Early Diagenesis of Plant Pigments in Hudson River Sediments. Estuarine, Coastal and Shelf Science, 1993, 36, 517-527.	0.9	41

#	Article	IF	CITATIONS
91	Particulate Organic Carbon Cycling and Transformation. , 2011, , 69-117.		41
92	Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nature Geoscience, 2017, 10, 846-851.	5.4	41
93	Controls on Organic Carbon Burial in the Eastern China Marginal Seas: A Regional Synthesis. Global Biogeochemical Cycles, 2021, 35, e2020GB006608.	1.9	41
94	Implications for the role of pre- versus post-depositional transformation of chlorophyll-a in the Lower Mississippi River and Louisiana shelf. Marine Chemistry, 2003, 81, 37-55.	0.9	40
95	Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary. Marine Chemistry, 2015, 168, 124-134.	0.9	40
96	A Late Pleistocene-Holocene multi-proxy record of climate variability in the Jazmurian playa, southeastern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 754-767.	1.0	40
97	Comparison of two methods for the analysis of lignin in marine sediments: CuO oxidation versus tetramethylammonium hydroxide (TMAH) thermochemolysis. Organic Geochemistry, 2008, 39, 1454-1461.	0.9	39
98	Historical reconstruction of organic carbon decay and preservation in sediments on the East China Sea shelf. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1079-1093.	1.3	39
99	Evidence for permafrost thaw and transport from an Alaskan North Slope watershed. Geophysical Research Letters, 2014, 41, 3117-3126.	1.5	39
100	Contribution of vascular-plant carbon to surface sediments across the coastal margin of Cyprus (eastern Mediterranean). Organic Geochemistry, 1999, 30, 287-297.	0.9	38
101	Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: implications for carbon cycling in a river-dominated margin. Marine Chemistry, 2005, 93, 159-177.	0.9	38
102	Rapid export of organic matter to the Mississippi Canyon. Eos, 2006, 87, 565.	0.1	38
103	Changes in sediment and organic carbon accumulation in a highly-disturbed ecosystem: The Sacramento-San Joaquin River Delta (California, USA). Marine Pollution Bulletin, 2009, 59, 154-163.	2.3	38
104	The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3556-3569.	1.3	38
105	The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes. Estuarine, Coastal and Shelf Science, 2015, 154, 48-57.	0.9	37
106	Positive feedback of consumer population density on resource supply. Trends in Ecology and Evolution, 1989, 4, 234-238.	4.2	36
107	Fundamental drivers of dissolved organic matter composition across an Arctic effective precipitation gradient. Limnology and Oceanography, 2020, 65, 1217-1234.	1.6	36
108	Tidal Wetland Gross Primary Production Across the Continental United States, 2000–2019. Global Biogeochemical Cycles, 2020, 34, e2019GB006349.	1.9	36

#	Article	IF	CITATIONS
109	SOURCE ROCK POTENTIAL OF EOCENE, PALEOCENE AND JURASSIC DEPOSITS IN THE SUBSURFACE OF THE POTWAR BASIN, NORTHERN PAKISTAN. Journal of Petroleum Geology, 2010, 33, 87-96.	0.9	35
110	Spatial and temporal distributions of bromoform and dibromomethane in the Atlantic Ocean and their relationship with photosynthetic biomass. Journal of Geophysical Research: Oceans, 2013, 118, 3950-3965.	1.0	34
111	Dissolved Organic Matter Composition Drives the Marine Production of Brominated Very Short-Lived Substances. Environmental Science & amp; Technology, 2015, 49, 3366-3374.	4.6	34
112	Biospheric and petrogenic organic carbon flux along southeast Alaska. Earth and Planetary Science Letters, 2016, 452, 238-246.	1.8	34
113	Can Reservoir Regulation Along the Yellow River Be a Sustainable Way to Save a Sinking Delta?. Earth's Future, 2020, 8, e2020EF001587.	2.4	34
114	Plant Pigments as Biomarkers of Organic Matter Sources in Sediments and Coastal Waters of Cyprus (eastern Mediterranean). Estuarine, Coastal and Shelf Science, 1996, 42, 103-115.	0.9	33
115	Increased Organic Carbon Burial in Northern Florida Mangroveâ€Salt Marsh Transition Zones. Global Biogeochemical Cycles, 2020, 34, e2019GB006334.	1.9	33
116	Transport and fate of dissolved organic carbon in the Lake Pontchartrain esutary, Louisiana, U.S.A Biogeochemistry, 1997, 38, 207-226.	1.7	32
117	Pyrophaeophorbide-a as a tracer of suspended particulate organic matter from the NE Pacific continental margin. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 715-731.	0.6	32
118	Novel decomposition products of chlorophyll-a in continental shelf (Louisiana shelf) sediments: formation and transformation of carotenol chlorin esters. Geochimica Et Cosmochimica Acta, 2003, 67, 2027-2042.	1.6	32
119	Photochemical changes in chemical markers of sedimentary organic matter source and age. Marine Chemistry, 2009, 113, 123-128.	0.9	32
120	Increasing Rates of Carbon Burial in Southwest Florida Coastal Wetlands. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005349.	1.3	32
121	Temporal and Spatial Dynamics of Particulate Organic Carbon in the Lake Pontchartrain Estuary, Southeast Louisiana, U.S.A. Estuarine, Coastal and Shelf Science, 1997, 45, 557-569.	0.9	31
122	Velocityâ€amplified microbial respiration rates in the lower Amazon River. Limnology and Oceanography Letters, 2018, 3, 265-274.	1.6	31
123	Feeding ecology of subsurface deposit-feeder Leitoscoloplos fragilis Verrill. I. Mechanisms affecting particle availability on intertidal sandflat. Journal of Experimental Marine Biology and Ecology, 1988, 115, 79-97.	0.7	30
124	Influence of Grazing and Nitrogen on Benthic Algal Blooms in Diesel Fuel-Contaminated Saltmarsh Sediments. Environmental Science & Technology, 2000, 34, 107-111.	4.6	30
125	Title is missing!. Biogeochemistry, 2003, 62, 39-58.	1.7	30
126	Carbon Cycling in a Shallow Turbid Estuary of Southeast Texas: The Use of Plant Pigment Biomarkers and Water Quality Parameters. Estuaries and Coasts, 1997, 20, 404.	1.7	29

#	Article	IF	CITATIONS
127	A 28â€ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea. Paleoceanography, 2007, 22, .	3.0	29
128	Controlling Hypoxia on the U.S. Louisiana Shelf: Beyond the Nutrient entric View. Eos, 2008, 89, 236-237.	0.1	29
129	Erosion of modern terrestrial organic matter as a major component of sediments in fjords. Geophysical Research Letters, 2017, 44, 1457-1465.	1.5	29
130	Mangrove Methane Biogeochemistry in the Indian Sundarbans: A Proposed Budget. Frontiers in Marine Science, 2017, 4, .	1.2	29
131	Experimental degradation of plant materials in Hudson river sediments. Biogeochemistry, 1991, 12, 171.	1.7	28
132	Historical eutrophication in the Changjiang and Mississippi delta-front estuaries: Stable sedimentary chloropigments as biomarkers. Continental Shelf Research, 2012, 47, 133-144.	0.9	28
133	Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights from the Holocene and Last Glacial Maximum. Earth and Planetary Science Letters, 2016, 434, 320-332.	1.8	28
134	Turbidity in Apalachicola Bay, Florida from Landsat 5 TM and Field Data: Seasonal Patterns and Response to Extreme Events. Remote Sensing, 2017, 9, 367.	1.8	28
135	Feeding ecology ofLeitoscoloplos fragilis. Marine Biology, 1988, 99, 123-131.	0.7	27
136	Dominant chlorophylls and carotenoids in macroalgae of the Baltic Sea (Baltic proper): Their use as potential biomarkers. Sarsia, 1997, 82, 55-62.	0.5	27
137	Microbial food web contributions to bottom water hypoxia in the northern Gulf of Mexico. Continental Shelf Research, 2008, 28, 1127-1137.	0.9	27
138	Shallow lake trophic status linked to late Holocene climate and human impacts. Journal of Paleolimnology, 2009, 42, 51-64.	0.8	26
139	Detrital phosphorus as a proxy of flooding events in the Changjiang River Basin. Science of the Total Environment, 2015, 517, 22-30.	3.9	26
140	Partitioning of organic carbon among density fractions in surface sediments of Fiordland, New Zealand. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1016-1031.	1.3	26
141	Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf. Journal of Marine Systems, 2017, 172, 64-74.	0.9	26
142	Cross-shelf changes in phytoplankton community composition in the Gulf of Mexico (Texas) Tj ETQq0 0 0 rgBT /(Overlock 1	0 Tf 50 142 1
143	Importance of lateral flux and its percolation depth on organic carbon export in Arctic tundra soil: Implications from a soil leaching experiment. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 796-810.	1.3	25

¹⁴⁴Formation of planktonic chromophoric dissolved organic matter in the ocean. Marine Chemistry,
2019, 209, 1-13.0.925

#	Article	IF	CITATIONS
145	Biogeochemical implications of levee confinement in the lowermost Mississippi River. Eos, 2003, 84, 469.	0.1	24
146	Fates of dissolved and particulate materials from the Mississippi river immediately after discharge into the northern Gulf of Mexico, USA, during a period of low wind stress. Continental Shelf Research, 2008, 28, 1443-1450.	0.9	24
147	Historical reconstruction of organic carbon inputs to the East China Sea inner shelf: Implications for anthropogenic activities and regional climate variability. Holocene, 2015, 25, 1869-1881.	0.9	24
148	Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill. Environmental Pollution, 2016, 214, 101-113.	3.7	24
149	Permafrost Organic Carbon Mobilization From the Watershed to the Colville River Delta: Evidence From ¹⁴ C Ramped Pyrolysis and Lignin Biomarkers. Geophysical Research Letters, 2017, 44, 11,491.	1.5	23
150	A rapid and precise method for the analysis of underivatized amino acids in natural samples using volatile-ion-pairing reverse-phase liquid chromatography–electrospray ionization tandem mass spectrometry. Organic Geochemistry, 2018, 115, 46-56.	0.9	23
151	Temporal and spatial variability, and the role of dissolved organic carbon (DOC) in methane fluxes from the Sabine River Floodplain (Southeast Texas, U.S.A.). Archiv Für Hydrobiologie, 1996, 136, 261-287.	1.1	23
152	Plant Pigments as Tracers of Emergent and Submergent Macrophytes from the Hudson River. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47, 492-494.	0.7	22
153	Inconsistencies between 14C and short-lived radionuclides-based sediment accumulation rates: Effects of long-term remineralization. Journal of Environmental Radioactivity, 2017, 174, 10-16.	0.9	22
154	Lipoxygenase-induced autoxidative degradation of terrestrial particulate organic matter in estuaries: A widespread process enhanced at high and low latitude. Organic Geochemistry, 2018, 115, 78-92.	0.9	22
155	Impact of Wetland Decline on Decreasing Dissolved Organic Carbon Concentrations along the Mississippi River Continuum. Frontiers in Marine Science, 2017, 3, .	1.2	21
156	Marine microbial community responses related to wetland carbon mobilization in the coastal zone. Limnology and Oceanography Letters, 2019, 4, 25-33.	1.6	21
157	Probable causes for cyanobacterial expansion in the Baltic Sea: Role of anoxia and phosphorus retention. Estuaries and Coasts, 2003, 26, 680-689.	1.7	20
158	High frequency measurement of nitrate concentration in the Lower Mississippi River, USA. Journal of Hydrology, 2014, 519, 376-386.	2.3	20
159	Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed: Effects of dam construction and land use change on regional inputs. Geophysical Research Letters, 2015, 42, 7983-7991.	1.5	19
160	Characterizing blue carbon stocks in <i>Thalassia testudinum</i> meadows subjected to different phosphorus supplies: A lignin biomarker approach. Limnology and Oceanography, 2018, 63, 2630-2646.	1.6	19
161	Millennial-scale carbon accumulation and molecular transformation in a permafrost core from Interior Alaska. Geochimica Et Cosmochimica Acta, 2019, 253, 231-248.	1.6	19
162	The evolution of biogeochemistry: revisited. Biogeochemistry, 2021, 154, 141-181.	1.7	19

#	Article	IF	CITATIONS
163	Editorial: Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters. Frontiers in Marine Science, 2016, 3, .	1.2	18
164	The effects of polycyclic aromatic hydrocarbon contamination and grazing on the abundance and composition of microphytobenthos in salt marsh sediments (Pass Fourchon, LA). Journal of Experimental Marine Biology and Ecology, 1999, 242, 1-20.	0.7	17
165	Carbonate Chemistry Dynamics of Surface Waters in the Northern Gulf of Mexico. Aquatic Geochemistry, 2010, 16, 337-351.	1.5	17
166	Hurricane Katrina impact on water quality in the East Pearl River, Mississippi. Journal of Hydrology, 2012, 414-415, 388-392.	2.3	17
167	Enhanced Aquatic Respiration Associated With Mixing of Clearwater Tributary and Turbid Amazon River Waters. Frontiers in Earth Science, 2019, 7, .	0.8	17
168	Carbon Cycling in the World's Deepest Blue Hole. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005307.	1.3	17
169	What global biogeochemical consequences will marine animal–sediment interactions have during climate change?. Elementa, 2021, 9, .	1.1	17
170	Burial and degradation of organic carbon in Louisiana shelf/slope sediments. Estuarine, Coastal and Shelf Science, 2011, 95, 232-244.	0.9	16
171	Algal community responses to shallow lake dystrophication1This article is derived from a special session entitled "AÂNew Hydrology: Inflow Effects on Ecosystem Form and Functioning―that took place at the February 2011 ASLO Aquatic Sciences conference in SanÂJuan, Puerto Rico Canadian lournal of Fisheries and Aquatic Sciences. 2012. 69. 1433-1443.	0.7	16
172	The Effects of PAH Contamination and Grazing on the Abundance and Composition of Microphytobenthos in Salt Marsh Sediments (Pass Fourchon, LA, U.S.A.): II: The Use of Plant Pigments as Biomarkers. Estuarine, Coastal and Shelf Science, 2000, 50, 425-439.	0.9	15
173	Sorption and desorption dynamics of bulk dissolved organic matter and amino acids in the Mississippi River plume - a microcosm study. Marine and Freshwater Research, 2010, 61, 1067.	0.7	15
174	Amino acid cycling in the Mississippi River Plume and effects from the passage of Hurricanes Isadore and Lili. Journal of Marine Systems, 2014, 136, 10-21.	0.9	15
175	Differential effects of solidâ€phase extraction resins on the measurement of dissolved ligninâ€phenols and organic matter composition in natural waters. Limnology and Oceanography: Methods, 2018, 16, 22-34.	1.0	15
176	Mechanisms of Organic Matter Export in Estuaries with Contrasting Carbon Sources. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3168-3188.	1.3	15
177	Biogeochemical Response of Apalachicola Bay and the Shelf Waters to Hurricane Michael Using Ocean Color Semi-Analytic/Inversion and Hydrodynamic Models. Frontiers in Marine Science, 2019, 6, .	1.2	15
178	Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humicâ€like fluorescent organic matter in the ocean. Limnology and Oceanography Letters, 2020, 5, 337-345.	1.6	15
179	Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China. PLoS ONE, 2016, 11, e0150898.	1.1	15
180	Historical changes in terrestrially derived organic carbon inputs to Louisiana continental margin sediments over the past 150 years. Journal of Geophysical Research, 2011, 116, .	3.3	14

#	Article	IF	CITATIONS
181	Spatial distribution of brominated very shortâ€ŀived substances in the eastern Pacific. Journal of Geophysical Research: Oceans, 2013, 118, 2318-2328.	1.0	14
182	Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes. , 2013, , 155-173.		14
183	Modern deposition rates and patterns of organic carbon burial in Fiordland, New Zealand. Geophysical Research Letters, 2016, 43, 11,768.	1.5	14
184	Effects of Estuarine Organic Matter Biogeochemistry on the Bioaccumulation of PAHs by Two Epibenthic Species. Estuaries and Coasts, 2000, 23, 864.	1.7	13
185	Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta, Alaska. Continental Shelf Research, 2014, 74, 11-24.	0.9	13
186	Mass balance implies Holocene development of a low-relief karst patterned landscape. Chemical Geology, 2019, 527, 118782.	1.4	13
187	A call to evaluate Plastic's impacts on marine benthic ecosystem interaction networks. Environmental Pollution, 2021, 273, 116423.	3.7	13
188	Effects of tributary inputs on nutrient export from the Mississippi and Atchafalaya Rivers to the Gulf of Mexico. Marine and Freshwater Research, 2010, 61, 1029.	0.7	12
189	Initiation and Development of Wetlands in Southern Florida Karst Landscape Associated With Accumulation of Organic Matter and Vegetation Evolution. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1604-1617.	1.3	12
190	Factors Controlling Storage, Sources, and Diagenetic State of Organic Carbon in a Prograding Subaerial Delta: Wax Lake Delta, Louisiana. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1115-1131.	1.3	12
191	Blue Carbon Soil Stock Development and Estimates Within Northern Florida Wetlands. Frontiers in Earth Science, 2021, 9, .	0.8	12
192	Molecular evidence for the export of terrigenous organic matter to the north Gulf of Mexico by solid-state 13C NMR and Fourier transform ion cyclotron resonance mass spectrometry of humic acids. Geochimica Et Cosmochimica Acta, 2022, 317, 39-52.	1.6	12
193	Freshwater and sediment dispersal in large river plumes. , 2013, , 55-85.		11
194	Historical Reconstruction of Phytoplankton Composition in Estuaries of Fiordland, New Zealand: the Application of Plant Pigment Biomarkers. Estuaries and Coasts, 2015, 38, 56-71.	1.0	11
195	Linking chromophoric organic matter transformation with biomarker indices in a marine phytoplankton growth and degradation experiment. Marine Chemistry, 2019, 214, 103665.	0.9	11
196	Storm-Generated Sediment Distribution Along the Northwest Florida Inner Continental Shelf. IEEE Journal of Oceanic Engineering, 2009, 34, 495-515.	2.1	10
197	Temperature Control on Soluble Reactive Phosphorus in the Lower Mississippi River?. Estuaries and Coasts, 2011, 34, 78-89.	1.0	10
198	The ocean in near equilibrium with atmospheric methyl bromide. Global Biogeochemical Cycles, 2012, 26, .	1.9	10

#	Article	IF	CITATIONS
199	Sources of organic matter in sediments of the Colville River delta, Alaska: A multi-proxy approach. Organic Geochemistry, 2015, 87, 96-106.	0.9	10
200	Multiple biomarkers highlight the importance of water column processes in treatment wetland organic matter cycling. Water Research, 2020, 168, 115153.	5.3	10
201	Blackcarbon in coastal and large river systems. , 2013, , 200-234.		9
202	The experimental flow to the Colorado River delta: Effects on carbon mobilization in a dry watercourse. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 607-627.	1.3	9
203	Seasonal Trends in Surface pCO2 and Air-Sea CO2 Fluxes in Apalachicola Bay, Florida, From VIIRS Ocean Color. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2466-2484.	1.3	9
204	Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp. Frontiers in Earth Science, 2020, 8, .	0.8	9
205	Carbon Deposition and Burial in Estuarine Sediments of the Contiguous United States. Global Biogeochemical Cycles, 2020, 34, e2019GB006376.	1.9	8
206	Ideas and perspectives: Biogeochemistry – some key foci for the future. Biogeosciences, 2021, 18, 3005-3013.	1.3	8
207	Nutrient and carbon dynamics in a large river-dominated coastal ecosystem: the Mississippi-Atchafalaya River system. , 2013, , 448-472.		7
208	Recent trophic state changes of selected Florida lakes inferred from bulk sediment geochemical variables and biomarkers. Journal of Paleolimnology, 2019, 62, 409-423.	0.8	7
209	The Fate and Transport of Allochthonous Blue Carbon in Divergent Coastal Systems. , 2018, , 27-49.		7
210	Sediment biomarkers elucidate the Holocene ontogeny of a shallow lake. PLoS ONE, 2018, 13, e0191073.	1.1	7
211	Orthogonal design for optimization of pigment extraction from surface sediments of the Changjiang River Estuary. Acta Oceanologica Sinica, 2011, 30, 33-42.	0.4	6
212	Historical variability in past phytoplankton abundance and composition in Doubtful Sound, New Zealand. Continental Shelf Research, 2013, 69, 110-122.	0.9	6
213	Editorial: The Role of Priming in Terrestrial and Aquatic Ecosystems. Frontiers in Earth Science, 2019, 7, .	0.8	6
214	The evolution of a coastal carbon store over the last millennium. Quaternary Science Reviews, 2021, 266, 107081.	1.4	6
215	Radionuclide and biomarker proxies of past ocean circulation and productivity in the Arabian Sea. Geophysical Research Letters, 2005, 32, .	1.5	5
216	New Approaches to the Gulf Hypoxia Problem. Eos, 2010, 91, 173-173.	0.1	5

#	Article	IF	CITATIONS
217	Geochemistry of the Congo River, estuary, and plume. , 2013, , 554-583.		5
218	Short- and long-term response of phytoplankton to ENSO in Prydz Bay, Antarctica: Evidences from field measurements, remote sensing data and stratigraphic biomarker records. Journal of Ocean University of China, 2014, 13, 437-444.	0.6	5
219	Organic matter source and thermal maturity within the Late Cretaceous Niobrara Formation, U.S. Western Interior. Marine and Petroleum Geology, 2017, 86, 812-822.	1.5	5
220	A multi-proxy investigation of late-Holocene temperature change and climate-driven fluctuations in sediment sourcing: Simpson Lagoon, Alaska. Holocene, 2018, 28, 984-997.	0.9	5
221	Density-Dependent Positive Feedbacks between Consumers and Their Resources. , 1991, , 331-340.		5
222	Diamondoids and biomarkers: as a tool to better define the effects of thermal cracking and microbial oxidation on oils/condensates from reservoirs of the Upper Indus Basin, Pakistan. Carbonates and Evaporites, 2011, 26, 155-165.	0.4	4
223	Sediment, organic carbon, nutrients, and trace elements: sources, transport, and biogeochemical cycles in the lowermost Mississippi River. , 2013, , 397-420.		4
224	Carbon and nutrient fluxes across tropical river-coastal boundaries. , 0, , 373-394.		4
225	Carbon Dynamics Along a Temperate Fjordâ€Head Delta: Linkages With Carbon Burial in Fjords. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3419-3430.	1.3	4
226	Coastal Wetland Soil Carbon Storage at Mangrove Range Limits in Apalachicola Bay, FL: Observations and Expectations. Frontiers in Forests and Global Change, 0, 5, .	1.0	4
227	Shelf and slope sedimentation associated with large deltaic systems. , 0, , 86-117.		3
228	Partial least squares analysis to describe the interactions between sediment properties and water quality in an agricultural watershed. Journal of Hydrology, 2018, 566, 386-395.	2.3	3
229	Recent Warming Fuels Increased Organic Carbon Export From Arctic Permafrost. AGU Advances, 2021, 2, e2021AV000396.	2.3	3
230	An introduction to the biogeochemistry of river-coastal systems. , 0, , 3-18.		2
231	Water and sediment dynamics through the wetlands and coastal water bodies of large river deltaic plains. , 2013, , 21-54.		2
232	Sedimentary carbon dynamics of the Atchafalaya and Mississippi River Delta system and associated margin. , 2013, , 473-502.		2
233	Composition and fluxes of carbon and nutrient species from the Yukon River basin in a changing environment. , 2013, , 503-529.		2
234	Characterization of Wetland Soil Organic Matter. Soil Science Society of America Book Series, 0, , 289-316.	0.3	2

#	Article	IF	CITATIONS
235	Organic carbon characteristics in Swedish forest soil trace postâ€depositional carbon dynamics. European Journal of Soil Science, 2016, 67, 492-503.	1.8	2
236	Photosynthetic Pigments: Chlorophylls, Carotenoids, and Phycobilins. , 2011, , .		2
237	Geochemistry of Marine Sediments. Eos, 2007, 88, 507-507.	0.1	1
238	Carbon biogeochemistry in the continuum of the Changjiang (Yangtze) River watersheds across the East China Sea. , 0, , 237-273.		1
239	Fluxes, processing, and fate of riverine organic and inorganic carbon in the Arctic Ocean. , 2013, , 530-553.		1
240	The Nile delta in the anthropocene: drivers of coastal change and impacts on land-ocean material transfer. , 2013, , 584-605.		1
241	Get the Lead Out, Too. American Journal of Clinical Pathology, 1982, 77, 115.2-115.	0.4	0
242	Is the Sabine-Neches Estuary Net Heterotrophic or Autotrophic? A Reply to the Comment by Flinn et al Estuaries and Coasts, 1998, 21, 839.	1.7	0
243	Flux and fate of the Yellow (Huanghe) River–derived materials to the sea: impacts of climate change and human activities. , 0, , 138-154.		0
244	Citation for presentation of the 2016 Alfred E. Treibs Award to Patrick G. Hatcher. Geochimica Et Cosmochimica Acta, 2017, 201, 434-435.	1.6	0
245	Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Astrobiology, 2021, 21, 83-102.	1.5	0
246	Reply to Comment by R. Parkinson on "Increasing Rates of Carbon Burial in Southwest Florida Coastal Wetlands―by J. Breithaupt etÂal Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006245.	1.3	0
247	Stable Isotopes and Radiocarbon. , 2011, , .		0
248	Lignins, Cutins, and Suberins. , 2011, , .		0
249	Chemical Biomarker Applications to Ecology and Paleoecology. , 2011, , .		0
250	Lipids: Fatty Acids. , 2011, , .		0
251	Nucleic Acids and Molecular Tools. , 2011, , .		0
252	Metabolic Synthesis. , 2011, , .		0

#	Article	IF	CITATIONS
253	Lipids: Alkenones, Polar Lipids, and Ether Lipids. , 2011, , .		0
254	Lipids: Hydrocarbons. , 2011, , .		0
255	Proteins: Amino Acids and Amines. , 2011, , .		0
256	Isoprenoid Lipids: Steroids, Hopanoids, and Triterpenoids. , 2011, , .		0
257	Carbohydrates: Neutral and Minor Sugars. , 2011, , .		0
258	Anthropogenic Markers. , 2011, , .		0
259	Analytical Chemical Methods and Instrumentation. , 2011, , .		0
260	Reply to Wilson etÂal.: Feedbacks between geomorphology and fauna engineers are key to predicting coastal response to rising seas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	0