

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An elastoplastic damage constitutive model for hybrid steel-polypropylene fiber reinforced concrete. International Journal of Damage Mechanics, 2022, 31, 1506-1532.	4.2	1
2	Physical and mechanical properties of pervious concrete with multi-admixtures. Magazine of Concrete Research, 2021, 73, 448-463.	2.0	18
3	Experimental investigation on the mechanical behavior of hybrid steel-polypropylene fiber reinforced concrete under conventional triaxial cyclic compression. Construction and Building Materials, 2021, 291, 123262.	7.2	25
4	Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression. Journal of Cleaner Production, 2021, 319, 128610.	9.3	23
5	Experimental investigation on the flexural behavior of pervious concrete beams reinforced with geogrids. Construction and Building Materials, 2019, 215, 275-284.	7.2	24
6	Performance of the High-Strength Self-Stressing and Self-Compacting Concrete-Filled Steel Tube Columns Subjected to the Uniaxial Compression. International Journal of Civil Engineering, 2018, 16, 1069-1083.	2.0	20
7	Stress-Strain Relation of Steel-Polypropylene-Blended Fiber-Reinforced Concrete under Uniaxial Cyclic Compression. Advances in Materials Science and Engineering, 2018, 2018, 1-19.	1.8	11
8	Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression. Construction and Building Materials, 2017, 140, 109-118.	7.2	87
9	Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. Construction and Building Materials, 2017, 145, 619-638.	7.2	93
10	The effect of random porosity field on supercritical carbonation of cement-based materials. Construction and Building Materials, 2017, 146, 144-155.	7.2	21
11	Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity. Engineering Structures, 2017, 148, 23-35.	5.3	135
12	Local bond performance of rebar embedded in steel-polypropylene hybrid fiber reinforced concrete under monotonic and cyclic loading. Construction and Building Materials, 2016, 103, 77-92.	7.2	109
13	Tensile Behavior of Steel-Polypropylene Hybrid Fiber-Reinforced Concrete. ACI Structural Journal, 2016, , .	0.2	15
14	Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns. Construction and Building Materials, 2015, 87, 16-27.	7.2	78
15	Phase transition induced interfacial debonding in shape memory alloy fiber–matrix system. International Journal of Solids and Structures, 2015, 75-76, 199-210.	2.7	8
16	Plasticity Model for Hybrid Fiber-Reinforced Concrete under True Triaxial Compression. Journal of Engineering Mechanics - ASCE, 2014, 140, 393-405.	2.9	36
17	A unified failure envelope for hybrid fibre reinforced concrete subjected to true triaxial compression. Composite Structures, 2014, 109, 31-40.	5.8	51
18	Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation. Composite Structures, 2014, 111, 497-509.	5.8	64

Yin Chi

#	Article	IF	CITATIONS
19	Experimental Study on Hybrid Fiber–Reinforced Concrete Subjected to Uniaxial Compression. Journal of Materials in Civil Engineering, 2014, 26, 211-218.	2.9	94
20	Experimental Study on Tensile Strength of Steel-Polypropylene Hybrid Fiber Reinforced Concrete. Advanced Science Letters, 2011, 4, 911-916.	0.2	19
21	Nonlinear finite element analysis of steel fiber reinforced concrete deep beams. Wuhan University Journal of Natural Sciences, 2008, 13, 201-206.	0.4	4
22	Hybrid Effects on Strength of Steel-Polypropylene Hybrid Fiber Reinforced Concrete under Uniaxial and Triaxial Compression. Applied Mechanics and Materials, 0, 268-270, 782-787.	0.2	4