Yinjie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864534/publications.pdf

Version: 2024-02-01

50 papers	1,607 citations	20 h-index	330143 37 g-index
50 all docs	50 docs citations	50 times ranked	1836 citing authors

#	Article	IF	CITATIONS
1	Extracellular matrix remodeling is associated with the survival of cardiomyocytes in the subendocardial region of the ischemic myocardium. Experimental Biology and Medicine, 2021, 246, 2579-2588.	2.4	2
2	COMMD1 upregulation is involved in copper efflux from ischemic hearts. Experimental Biology and Medicine, 2021, 246, 607-616.	2.4	10
3	Copper promotion of myocardial regeneration. Experimental Biology and Medicine, 2020, 245, 911-921.	2.4	26
4	Copper promotes migration of adipose-derived stem cells by enhancing vimentin-Ser39 phosphorylation. Experimental Cell Research, 2020, 388, 111859.	2.6	12
5	Profiling of nuclear copper-binding proteins under hypoxic condition. BioMetals, 2019, 32, 329-341.	4.1	3
6	The Association Between Myocardial Fibrosis and Depressed Capillary Density in Rat Model of Left Ventricular Hypertrophy. Cardiovascular Toxicology, 2018, 18, 304-311.	2.7	18
7	Copper-induced reduction in myocardial fibrosis is associated with increased matrix metalloproteins in a rat model of cardiac hypertrophy. Metallomics, 2018, 10, 201-208.	2.4	18
8	Trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats. Experimental Biology and Medicine, 2018, 243, 1141-1152.	2.4	17
9	Regression of pressure overloadâ€induced cardiac hypertrophy by TETAâ€mediated myocardial copper supplementation in rats. FASEB Journal, 2018, 32, 580.7.	0.5	0
10	The Association between Suppressed Transformation of Fibroblasts to Myofibroblasts and Fibrolysis Induced by Copper Supplementation in Monkeys of Myocardial Ischemic Infarction. FASEB Journal, 2018, 32, 717.17.	0.5	0
11	Safety Evaluation of Sevoflurane as Anesthetic Agent in Mouse Model of Myocardial Ischemic Infarction. Cardiovascular Toxicology, 2017, 17, 150-156.	2.7	6
12	Featured Article: Effect of copper on nuclear translocation of copper chaperone for superoxide dismutase-1. Experimental Biology and Medicine, 2016, 241, 1483-1488.	2.4	10
13	Decreased copper concentrations but increased lysyl oxidase activity in ischemic hearts of rhesus monkeys. Metallomics, 2016, 8, 973-980.	2.4	14
14	The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia. Metallomics, 2016, 8, 654-662.	2.4	15
15	Featured Article: Hypoxia-inducible factor- \hat{l} dependent nuclear entry of factor inhibiting HIF-1. Experimental Biology and Medicine, 2015, 240, 1446-1451.	2.4	8
16	The involvement of vimentin in copper-induced regression of cardiomyocyte hypertrophy. Metallomics, 2015, 7, 1331-1337.	2.4	7
17	An improved technique for cerebrospinal fluid collection of cisterna magna in Rhesus monkeys. Journal of Neuroscience Methods, 2015, 249, 59-65.	2.5	9
18	Role of copper in regression of cardiac hypertrophy. , 2015, 148, 66-84.		46

#	Article	IF	Citations
19	Zinc supplementation suppresses the progression of bile duct ligation-induced liver fibrosis in mice. Experimental Biology and Medicine, 2015, 240, 1197-1204.	2.4	12
20	Brief Communication: Copper suppression of vascular endothelial growth factor receptor-2 is involved in the regression of cardiomyocyte hypertrophy. Experimental Biology and Medicine, 2014, 239, 948-953.	2.4	6
21	A novel knot method for individually measurable aortic constriction in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H987-H995.	3.2	6
22	Vascular endothelial growth factor recovers suppressed cytochrome c oxidase activity by restoring copper availability in hypertrophic cardiomyocytes. Experimental Biology and Medicine, 2014, 239, 1671-1677.	2.4	8
23	Copper-dependent and -independent hypoxia-inducible factor-1 regulation of gene expression. Metallomics, 2014, 6, 1889-1893.	2.4	32
24	Changes in copper concentrations affect the protein levels but not the mRNA levels of copper chaperones in human umbilical vein endothelial cells. Metallomics, 2014, 6, 554-559.	2.4	5
25	The Effect of Myocardial Infarct Size on Cardiac Reserve in Rhesus Monkeys. Cardiovascular Toxicology, 2014, 14, 309-315.	2.7	5
26	Ischemia-induced Copper Loss and Suppression of Angiogenesis in the Pathogenesis of Myocardial Infarction. Cardiovascular Toxicology, $2013, 13, 1-8$.	2.7	35
27	Decreases in Electrocardiographic R-Wave Amplitude and QT Interval Predict Myocardial Ischemic Infarction in Rhesus Monkeys with Left Anterior Descending Artery Ligation. PLoS ONE, 2013, 8, e71876.	2.5	32
28	Disturbance of Copper Homeostasis Is a Mechanism for Homocysteine-Induced Vascular Endothelial Cell Injury. PLoS ONE, 2013, 8, e76209.	2.5	16
29	Homocysteine Restricts Copper Availability Leading to Suppression of Cytochrome C Oxidase Activity in Phenylephrine-Treated Cardiomyocytes. PLoS ONE, 2013, 8, e67549.	2.5	18
30	Copper Is Required for Cobalt-Induced Transcriptional Activity of Hypoxia-Inducible Factor-1. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 561-567.	2.5	53
31	Immunohistochemical detection of differentially localized up-regulation of lysyl oxidase and down-regulation of matrix metalloproteinase-1 in rhesus monkey model of chronic myocardial infarction. Experimental Biology and Medicine, 2012, 237, 853-859.	2.4	25
32	Copper and homocysteine in cardiovascular diseases., 2011, 129, 321-331.		99
33	Cardiac Arrhythmias Induced by Chloral Hydrate in Rhesus Monkeys. Cardiovascular Toxicology, 2011, 11, 128-133.	2.7	7
34	Electrocardiographic Characterization of Rhesus Monkey Model of Ischemic Myocardial Infarction Induced by Left Anterior Descending Artery Ligation. Cardiovascular Toxicology, 2011, 11, 365-372.	2.7	25
35	Cytochrome c Oxidase is Essential for Copper-Induced Regression of Cardiomyocyte Hypertrophy. Cardiovascular Toxicology, 2010, 10, 208-215.	2.7	19
36	Role of Copper and Homocysteine in Pressure Overload Heart Failure. Cardiovascular Toxicology, 2008, 8, 137-144.	2.7	29

#	Article	IF	Citations
37	Herbogenomics: From Traditional Chinese Medicine to Novel Therapeutics. Experimental Biology and Medicine, 2008, 233, 1059-1065.	2.4	47
38	Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. Journal of Experimental Medicine, 2007, 204, 657-666.	8.5	150
39	Metallothionein rescues hypoxia-inducible factor-1 transcriptional activity in cardiomyocytes under diabetic conditions. Biochemical and Biophysical Research Communications, 2007, 360, 286-289.	2.1	22
40	Changes in copper and zinc status and response to dietary copper deficiency in metallothionein-overexpressing transgenic mouse heart. Journal of Nutritional Biochemistry, 2007, 18, 714-718.	4.2	10
41	Antioxidant defense against anthracycline cardiotoxicity by metallothionein. Cardiovascular Toxicology, 2007, 7, 95-100.	2.7	31
42	Metallothionein Redox Cycle and Function. Experimental Biology and Medicine, 2006, 231, 1459-1467.	2.4	178
43	Cardiac Hypertrophy: A Risk Factor for QT-Prolongation and Cardiac Sudden Death. Toxicologic Pathology, 2006, 34, 58-66.	1.8	87
44	Marginal Dietary Copper Restriction Induces Cardiomyopathy in Rats. Journal of Nutrition, 2005, 135, 2130-2136.	2.9	48
45	Zinc prevention and treatment of alcoholic liver disease. Molecular Aspects of Medicine, 2005, 26, 391-404.	6.4	104
46	Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochemical and Biophysical Research Communications, 2005, 332, 853-858.	2.1	97
47	Regression of Dietary Copper Restriction-Induced Cardiomyopathy by Copper Repletion in Mice. Journal of Nutrition, 2004, 134, 855-860.	2.9	41
48	Changes in the Gene Expression Associated with Carbon Tetrachloride-Induced Liver Fibrosis Persist after Cessation of Dosing in Mice. Toxicological Sciences, 2004, 79, 404-410.	3.1	42
49	Dietary Copper Restriction-Induced Changes in Myocardial Gene Expression and the Effect of Copper Repletion. Experimental Biology and Medicine, 2004, 229, 616-622.	2.4	37
50	Congestive Heart Failure in Copper-Deficient Mice. Experimental Biology and Medicine, 2003, 228, 811-817.	2.4	60