List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interference with zinc homeostasis and oxidative stress induction as probable mechanisms for cadmium-induced embryo-toxicity in zebrafish. Environmental Science and Pollution Research, 2022, 29, 39578-39592.	2.7	7
2	A Closer Look at Estrogen Receptor Mutations in Breast Cancer and Their Implications for Estrogen and Antiestrogen Responses. International Journal of Molecular Sciences, 2021, 22, 756.	1.8	23
3	Apigenin, a Partial Antagonist of the Estrogen Receptor (ER), Inhibits ER-Positive Breast Cancer Cell Proliferation through Akt/FOXM1 Signaling. International Journal of Molecular Sciences, 2021, 22, 470.	1.8	29
4	Nuclear translocation of MRTFA in MCF7 breast cancer cells shifts ERα nuclear/genomic to extra-nuclear/non genomic actions. Molecular and Cellular Endocrinology, 2021, 530, 111282.	1.6	7
5	Key parameter optimization using multivariable linear model for the evaluation of the in vitro estrogenic activity assay in T47D cell lines (CXCLâ€ŧest). Journal of Applied Toxicology, 2021, , .	1.4	0
6	Characterization of Glyceollins as Novel Aryl Hydrocarbon Receptor Ligands and Their Role in Cell Migration. International Journal of Molecular Sciences, 2020, 21, 1368.	1.8	11
7	Deciphering the Molecular Mechanisms Sustaining the Estrogenic Activity of the Two Major Dietary Compounds Zearalenone and Apigenin in ER-Positive Breast Cancer Cell Lines. Nutrients, 2019, 11, 237.	1.7	22
8	An Update on the Effects of Glyceollins on Human Health: Possible Anticancer Effects and Underlying Mechanisms. Nutrients, 2019, 11, 79.	1.7	29
9	Molecular Pathways of Estrogen Receptor Action. International Journal of Molecular Sciences, 2018, 19, 2591.	1.8	25
10	Mixture Concentration-Response Modeling Reveals Antagonistic Effects of Estradiol and Genistein in Combination on Brain Aromatase Gene (cyp19a1b) in Zebrafish. International Journal of Molecular Sciences, 2018, 19, 1047.	1.8	12
11	Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation. Toxicology and Applied Pharmacology, 2017, 325, 61-70.	1.3	40
12	Rapid assessment of estrogenic compounds by CXCL-test illustrated by the screening of the UV-filter derivative benzophenones. Chemosphere, 2017, 173, 253-260.	4.2	11
13	Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells. Cell Communication and Signaling, 2017, 15, 26.	2.7	21
14	Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects?. International Journal of Molecular Sciences, 2017, 18, 1381.	1.8	118
15	Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer. Genes, 2017, 8, 229.	1.0	58
16	Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. Journal of Applied Toxicology, 2016, 36, 863-871.	1.4	42
17	Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish. Toxicology and Applied Pharmacology, 2016, 305, 12-21.	1.3	25
18	Additive effects of levonorgestrel and ethinylestradiol on brain aromatase (cyp19a1b) in zebrafish specific in vitro and in vivo bioassays. Toxicology and Applied Pharmacology, 2016, 307, 108-114.	1.3	16

#	Article	IF	CITATIONS
19	The actin/MKL1 signalling pathway influences cell growth and gene expression through large-scale chromatin reorganization and histone post-translational modifications. Biochemical Journal, 2014, 461, 257-268.	1.7	22
20	Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Molecular and Cellular Endocrinology, 2014, 390, 34-44.	1.6	11
21	Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicology and Applied Pharmacology, 2014, 280, 60-69.	1.3	38
22	COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF signaling and stimulates breast cancer cell migration. BMC Cancer, 2014, 14, 407.	1.1	29
23	Differentiation of PC12 cells expressing estrogen receptor alpha: A new bioassay for endocrine-disrupting chemicals evaluation. Chemosphere, 2014, 112, 240-247.	4.2	10
24	Estrogen represses CXCR7 gene expression by inhibiting the recruitment of NFκB transcription factor at the CXCR7 promoter in breast cancer cells. Biochemical and Biophysical Research Communications, 2013, 431, 729-733.	1.0	22
25	Modulation of Estrogen Receptor Alpha Activity and Expression During Breast Cancer Progression. Vitamins and Hormones, 2013, 93, 135-160.	0.7	24
26	Assessment and Molecular Actions of Endocrine-Disrupting Chemicals That Interfere with Estrogen Receptor Pathways. International Journal of Endocrinology, 2013, 2013, 1-14.	0.6	48
27	Estrogenic Potency of Benzophenone UV Filters in Breast Cancer Cells: Proliferative and Transcriptional Activity Substantiated by Docking Analysis. PLoS ONE, 2013, 8, e60567.	1.1	60
28	Unliganded Estrogen Receptor Alpha Promotes PC12 Survival during Serum Starvation. PLoS ONE, 2013, 8, e69081.	1.1	16
29	Selective Activation of Zebrafish Estrogen Receptor Subtypes by Chemicals by Using Stable Reporter Gene Assay Developed in a Zebrafish Liver Cell Line. Toxicological Sciences, 2012, 125, 439-449.	1.4	57
30	Epigenetic memories: structural marks or active circuits?. Cellular and Molecular Life Sciences, 2012, 69, 2189-2203.	2.4	10
31	A Dynamic Model of Transcriptional Imprinting Derived from the Vitellogenesis Memory Effect. Biophysical Journal, 2011, 101, 1557-1568.	0.2	8
32	Differential Estrogen-Regulation of CXCL12 Chemokine Receptors, CXCR4 and CXCR7, Contributes to the Growth Effect of Estrogens in Breast Cancer Cells. PLoS ONE, 2011, 6, e20898.	1.1	91
33	Lumiestrone is Photochemically Derived from Estrone and may be Released to the Environment without Detection. Frontiers in Endocrinology, 2011, 2, 83.	1.5	29
34	Effects of Estrogens and Endocrine-Disrupting Chemicals on Cell Differentiation–Survival–Proliferation in Brain: Contributions of Neuronal Cell Lines. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2011, 14, 300-327.	2.9	25
35	Involvement of COUP-TFs in Cancer Progression. Cancers, 2011, 3, 700-715.	1.7	14
36	Aromatase in the brain of teleost fish: Expression, regulation and putative functions. Frontiers in Neuroendocrinology, 2010, 31, 172-192.	2.5	270

#	Article	IF	CITATIONS
37	Development and validation of a test for environmental estrogens: Checking xenoâ€estrogen activity by CXCL12 secretion in BREAST CANCER CELL LINES (CXCLâ€test). Environmental Toxicology, 2010, 25, 495-503.	2.1	22
38	Androgens Upregulate cyp19a1b (Aromatase B) Gene Expression in the Brain of Zebrafish (Danio rerio) Through Estrogen Receptors1. Biology of Reproduction, 2009, 80, 889-896.	1.2	98
39	Repression of the Estrogen Receptor-α Transcriptional Activity by the Rho/Megakaryoblastic Leukemia 1 Signaling Pathway. Journal of Biological Chemistry, 2009, 284, 33729-33739.	1.6	18
40	Early regulation of brain aromatase (<i>cyp19a1b</i>) by estrogen receptors during zebrafish development. Developmental Dynamics, 2009, 238, 2641-2651.	0.8	81
41	COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer Research and Treatment, 2008, 110, 69-83.	1.1	30
42	Characterization of a <i>cis</i> â€acting element involved in cellâ€specific expression of the zebrafish brain aromatase gene. Molecular Reproduction and Development, 2008, 75, 1549-1557.	1.0	47
43	Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. General and Comparative Endocrinology, 2008, 155, 31-62.	0.8	280
44	Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays. Toxicology and Applied Pharmacology, 2008, 232, 384-395.	1.3	127
45	Loss of E-cadherin-mediated cell contacts reduces estrogen receptor alpha (ERα) transcriptional efficiency by affecting the respective contribution exerted by AF1 and AF2 transactivation functions. Biochemical and Biophysical Research Communications, 2008, 365, 304-309.	1.0	10
46	Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. Journal of Comparative Neurology, 2007, 501, 150-167.	0.9	257
47	Expression of Zebra Fish Aromatase cyp19a and cyp19b Genes in Response to the Ligands of Estrogen Receptor and Aryl Hydrocarbon Receptor. Toxicological Sciences, 2006, 96, 255-267.	1.4	79
48	Assessment of Xenoestrogens Using Three Distinct Estrogen Receptors and the Zebrafish Brain Aromatase Gene in a Highly Responsive Glial Cell System. Environmental Health Perspectives, 2006, 114, 752-758.	2.8	78
49	Relationships between aromatase and estrogen receptors in the brain of teleost fish. General and Comparative Endocrinology, 2005, 142, 60-66.	0.8	136
50	Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. Journal of Comparative Neurology, 2005, 485, 304-320.	0.9	228
51	Assessment of Estrogenic Endocrine-Disrupting Chemical Actions in the Brain Usingin VivoSomatic Gene Transfer. Environmental Health Perspectives, 2005, 113, 329-334.	2.8	18
52	Analysis of the estrogen regulation of the zebrafish estrogen receptor (ER) reveals distinct effects of ERalpha, ERbeta1 and ERbeta2. Journal of Molecular Endocrinology, 2004, 32, 975-986.	1.1	181
53	The Relative Contribution Exerted by AF-1 and AF-2 Transactivation Functions in Estrogen Receptor α Transcriptional Activity Depends upon the Differentiation Stage of the Cell. Journal of Biological Chemistry, 2004, 279, 26184-26191.	1.6	72
54	Distribution of aromatase mRNA and protein in the brain and pituitary of female rainbow trout: Comparison with estrogen receptor ?. Journal of Comparative Neurology, 2003, 462, 180-193.	0.9	155

#	Article	IF	CITATIONS
55	Molecular Characterization of Three Estrogen Receptor Forms in Zebrafish: Binding Characteristics, Transactivation Properties, and Tissue Distributions1. Biology of Reproduction, 2002, 66, 1881-1892.	1.2	359
56	A Dynamic Structural Model for Estrogen Receptor-Î \pm Activation by Ligands, Emphasizing the Role of Interactions between Distant A and E Domains. Molecular Cell, 2002, 10, 1019-1032.	4.5	114
57	Cloning of a cDNA Coding for Active Tyrosine Hydroxylase in the Rainbow Trout (Oncorhynchus) Tj ETQq1 1 0.78- 2002, 71, 920-928.	4314 rgBT 2.1	/Overlock 16
58	Formation of an hERalpha-COUP-TFI complex enhances hERalpha AF-1 through Ser118 phosphorylation by MAPK. EMBO Journal, 2002, 21, 3443-3453.	3.5	35
59	Evidence of rainbow trout prolactin interaction with its receptor through unstable homodimerisation. Molecular and Cellular Endocrinology, 2001, 172, 105-113.	1.6	25
60	Effects of nonylphenol on estrogen receptor conformation, transcriptional activity and sexual reversion in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 2001, 53, 173-186.	1.9	43
61	Assessment of oestrogenic potency of chemicals used as growth promoter by inâ€vitro methods. Apmis, 2001, 109, S473.	0.9	0
62	Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods. Human Reproduction, 2001, 16, 1030-1036.	0.4	141
63	Tissue-Specific Expression of Two Structurally Different Estrogen Receptor Alpha Isoforms along the Female Reproductive Axis of an Oviparous Species, the Rainbow Trout1. Biology of Reproduction, 2001, 65, 1548-1557.	1.2	53
64	Synergism Between ERα Transactivation Function 1 (AF-1) and AF-2 Mediated by Steroid Receptor Coactivator Protein-1: Requirement for the AF-1 α-Helical Core and for a Direct Interaction Between the N- and C-Terminal Domains. Molecular Endocrinology, 2001, 15, 1953-1970.	3.7	129
65	Synergism Between ERÂ Transactivation Function 1 (AF-1) and AF-2 Mediated by Steroid Receptor Coactivator Protein-1: Requirement for the AF-1 Â-Helical Core and for a Direct Interaction Between the N- and C-Terminal Domains. Molecular Endocrinology, 2001, 15, 1953-1970.	3.7	79
66	Effects of Melatonin on Liver Estrogen Receptor and Vitellogenin Expression in Rainbow Trout: An in Vitro and in Vivo Study. General and Comparative Endocrinology, 2000, 118, 344-353.	0.8	22
67	Two Estrogen Receptor (ER) Isoforms with Different Estrogen Dependencies Are Generated from the Trout ER Gene1. Endocrinology, 2000, 141, 571-580.	1.4	88
68	Function of N-Terminal Transactivation Domain of the Estrogen Receptor Requires a Potential α-Helical Structure and Is Negatively Regulated by the A Domain. Molecular Endocrinology, 2000, 14, 1849-1871.	3.7	43
69	The analysis of chimeric human/rainbow trout estrogen receptors reveals amino acid residues outside of P- and D-boxes important for the transactivation function. Nucleic Acids Research, 2000, 28, 2634-2642.	6.5	15
70	Inhibition of Rainbow Trout (Oncorhynchus mykiss) Estrogen Receptor Activity by Cadmium1. Biology of Reproduction, 2000, 63, 259-266.	1.2	100
71	A mineralocorticoid-like receptor in the rainbow trout, Oncorhynchus mykiss: cloning and characterization of its steroid binding domain. Steroids, 2000, 65, 319-328.	0.8	124
72	Interplay between liganded and orphan nuclear receptors controls reproductive pathways. Biochemistry and Cell Biology, 2000, 78, 345-358.	0.9	8

#	Article	IF	CITATIONS
73	Function of N-Terminal Transactivation Domain of the Estrogen Receptor Requires a Potential Â-Helical Structure and Is Negatively Regulated by the A Domain. Molecular Endocrinology, 2000, 14, 1849-1871.	3.7	25
74	Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals. Environmental Health Perspectives, 1999, 107, 89-108.	2.8	374
75	Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals. Environmental Health Perspectives, 1999, 107, 89.	2.8	70
76	Expression and Localization of Messenger Ribonucleic Acid for the Vitellogenin Receptor in Ovarian Follicles Throughout Oogenesis in the Rainbow Trout, Oncorhynchus mykiss1. Biology of Reproduction, 1999, 60, 1057-1068.	1.2	73
77	Synergism between a half-site and an imperfect estrogen-responsive element, and cooperation with COUP-TFI are required for estrogen receptor (ER) to achieve a maximal estrogen-stimulation of rainbow trout ER gene. FEBS Journal, 1999, 259, 385-395.	0.2	43
78	Trout oestrogen receptor sensitivity to xenobiotics as tested by different bioassays. Aquaculture, 1999, 177, 353-365.	1.7	16
79	Cloning and Sequencing of the Gilthead Sea Bream Estrogen Receptor cDNA. DNA Sequence, 1999, 10, 75-84.	0.7	24
80	A Complex Regulatory Unit Mediates Estrogen Receptor Gene Autoregulation in Fish. Annals of the New York Academy of Sciences, 1998, 839, 129-132.	1.8	1
81	An Extra Peptide Sequence within the DNA Binding Domain of a Fish Glucocorticoid Receptor Arising from a Special Exon-Intron Organization: Analysis of Its Transactivating Role. Annals of the New York Academy of Sciences, 1998, 839, 612-614.	1.8	2
82	Identification of potential sites of cortisol actions on the reproductive axis in rainbow trout. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 119, 243-249.	0.5	17
83	Evolution of oogenesis: the receptor for vitellogenin from the rainbow trout. Journal of Lipid Research, 1998, 39, 1929-1937.	2.0	87
84	Two complementary bioassays for screening the estrogenic potency of xenobiotics: recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. Journal of Molecular Endocrinology, 1997, 19, 321-335.	1,1	171
85	Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen. FEBS Letters, 1997, 411, 145-148.	1.3	25
86	Differential regulation of two genes implicated in fish reproduction: Vitellogenin and estrogen receptor genes. Molecular Reproduction and Development, 1997, 48, 317-323.	1.0	85
87	Regulation of gene expression and biological activity of rainbow trout estrogen receptor. Fish Physiology and Biochemistry, 1997, 17, 123-133.	0.9	36
88	Title is missing!. Fish Physiology and Biochemistry, 1997, 17, 53-62.	0.9	38
89	Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Molecular and Cellular Endocrinology, 1996, 124, 173-183.	1.6	179
90	Estrogen Receptors Are Expressed in a Subset of Tyrosine Hydroxylase-Positive Neurons of the Anterior Preoptic Region in the Rainbow Trout. Neuroendocrinology, 1996, 63, 156-165.	1.2	86

#	Article	IF	CITATIONS
91	Differential Functional Activities of Rainbow Trout and Human Estrogen Receptors Expressed in the Yeast Saccharomyces cerevisiae. FEBS Journal, 1995, 233, 584-592.	0.2	77
92	Do gonadotrophin-releasing hormone neurons express estrogen receptors in the rainbow trout? A double immunohistochemical study. Journal of Comparative Neurology, 1995, 363, 461-474.	0.9	86
93	Influence of xenobiotics on rainbow trout liver estrogen receptor and vitellogenin gene expression. Journal of Molecular Endocrinology, 1995, 15, 143-151.	1.1	203
94	Characterization of an estrogen-responsive element implicated in regulation of the rainbow trout estrogen receptor gene. Journal of Molecular Endocrinology, 1995, 15, 37-47.	1.1	53
95	Rainbow trout estrogen receptor presents an equal specificity but a differential sensitivity for estrogens than human estrogen receptor. Molecular and Cellular Endocrinology, 1995, 109, 27-35.	1.6	77
96	Effect of in vivo oestradiol treatment on cell-free transcription in trout liver nuclear extracts. Journal of Molecular Endocrinology, 1994, 13, 137-147.	1.1	6
97	Distribution of Estrogen Receptor-Immunoreactive Cells in the Brain of the Rainbow Trout (Oncorhynchus mykiss). Journal of Neuroendocrinology, 1994, 6, 573-583.	1.2	62
98	Overexpression of rainbow trout estrogen receptor domains in Escherichia coli: characterization and utilization in the production of antibodies for immunoblotting and immunocytochemistry. Molecular and Cellular Endocrinology, 1994, 104, 81-93.	1.6	49
99	11 Structure and Regulation of Genes for Estrogen Receptors. Fish Physiology, 1994, 13, 331-366.	0.2	9
100	Estrogen receptors: Ligand discrimination and antiestrogen action. Breast Cancer Research and Treatment, 1993, 27, 17-26.	1.1	25
101	Hormone binding and transcription activation by estrogen receptors: Analyses using mammalian and yeast systems. Journal of Steroid Biochemistry and Molecular Biology, 1993, 47, 39-48.	1.2	68
102	An assessment of the role of domain F and pest sequences in estrogen receptor half-life and bioactivity. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 663-672.	1.2	48
103	Identification of charged residues in an N-terminal portion of the hormone-binding domain of the human estrogen receptor important in transcriptional activity of the receptor. Molecular Endocrinology, 1993, 7, 1408-1417.	3.7	39
104	Rainbow trout p53: cDNA cloning and biochemical characterization. Gene, 1992, 112, 241-245.	1.0	71
105	In vivo estrogen induction of hepatic estrogen receptor mRNA and correlation with vitellogenin mRNA in rainbow trout. Molecular and Cellular Endocrinology, 1991, 75, 205-212.	1.6	161
106	cDNA and amino acid sequences of rainbow trout (Oncorhynchus mykiss) lysozymes and their implications for the evolution of lysozyme and lactalbumin. Journal of Molecular Evolution, 1991, 32, 187-198.	0.8	105
107	Full-length sequence and in vitro expression of rainbow trout estrogen receptor cDNA. Molecular and Cellular Endocrinology, 1990, 71, 195-204.	1.6	116
108	Identification and Estrogen Induction of Two Estrogen Receptors (ER) Messenger Ribonucleic Acids in the Rainbow Trout Liver: Sequence Homology with other ERs. Molecular Endocrinology, 1989, 3, 44-51.	3.7	178

#	Article	IF	CITATIONS
109	Vitellogenin gene expression in primary culture of male rainbow trout hepatocytes. General and Comparative Endocrinology, 1988, 70, 284-290.	0.8	73