Yuji Sutou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864290/publications.pdf Version: 2024-02-01

76326 40979 9,484 205 40 93 citations h-index g-index papers 210 210 210 4690 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrical Conduction Mechanism of βâ€MnTe Thin Film with Wurtziteâ€Type Structure Using Radiofrequency Magnetron Sputtering. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	5
2	Design strategy of phase change material properties for low-energy memory application. Materials and Design, 2022, 216, 110560.	7.0	10
3	Application of deep neural network learning in composites design. European Journal of Materials, 2022, 2, 117-170.	2.6	12
4	Improved Ordering of Quasi-Two-Dimensional MoS ₂ via an Amorphous-to-Crystal Transition Initiated from Amorphous Sulfur-Rich MoS _{2+<i>x</i>} . Crystal Growth and Design, 2022, 22, 3072-3079.	3.0	7
5	Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: amorphous, 1T′ and 2H phases. Journal of Materials Chemistry C, 2022, 10, 10627-10635.	5.5	9
6	Thermal stress control of the polymorphic transformation in MnTe semiconductor films. Materialia, 2022, 24, 101493.	2.7	2
7	Effect of N dopants on the phase change characteristics of Cr2Ge2Te6 film revealed by changes in optical properties. Applied Surface Science, 2022, 601, 154189.	6.1	1
8	Potential of low-resistivity Cu2Mg for highly scaled interconnects and its challenges. Applied Surface Science, 2021, 537, 148035.	6.1	11
9	Temperatureâ€Dependent Electronic Transport in Nonâ€Bulkâ€Resistanceâ€Variation Nitrogenâ€Doped Cr ₂ Ge ₂ Te ₆ Phaseâ€Change Material. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000415.	2.4	4
10	High Contact Resistivity Enabling Lowâ€Energy Operation in Cr ₂ Ge ₂ Te ₆ â€Based Phaseâ€Change Random Access Memory. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000392.	2.4	6
11	Thermal stability and polymorphic transformation kinetics in β-MnTe films deposited via radiofrequency magnetron sputtering. Japanese Journal of Applied Physics, 2021, 60, 045504.	1.5	5
12	Dimensional transformation of chemical bonding during crystallization in a layered chalcogenide material. Scientific Reports, 2021, 11, 4782.	3.3	16
13	Understanding the low resistivity of the amorphous phase of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:n phase-change material: Experimental evidence for the key role of Cr clusters. Physical Review Materials. 2021. 5.</mml:n </mml:msub></mml:mrow></mml:math 	nn>22.4	nl:mn>
14	Observation of ultrafast amorphization dynamics in GeCu2Te3 thin films using echelon-based single-shot transient absorbance spectroscopy. Applied Physics Letters, 2021, 119, .	3.3	3
15	Evolution of the local structure surrounding nitrogen atoms upon the amorphous to crystalline phase transition in nitrogen-doped Cr2Ge2Te6 phase-change material. Applied Surface Science, 2021, 556, 149760.	6.1	4
16	Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS ₂ : Implications for 2D Electronic Devices. ACS Applied Nano Materials, 2021, 4, 8834-8844.	5.0	22
17	Low resistance-drift characteristics in Cr2Ge2Te6-based phase change memory devices with a high-resistance crystalline phase. Materials Science in Semiconductor Processing, 2021, 133, 105961.	4.0	10
18	Interdiffusion reliability and resistivity scaling of intermetallic compounds as advanced interconnect materials. Journal of Applied Physics, 2021, 129, .	2.5	14

#	Article	IF	CITATIONS
19	Bidirectional Electric-Induced Conductance Based on GeTe/Sb2Te3 Interfacial Phase Change Memory for Neuro-Inspired Computing. Electronics (Switzerland), 2021, 10, 2692.	3.1	2
20	Influence of Thomson effect on amorphization in phase-change memory: dimensional analysis based on Buckingham's ĐŸ theorem for Ge ₂ Sb ₂ Te ₅ . Materials Research Express, 2021, 8, 115902.	1.6	4
21	Nitrogen doping-induced local structure change in a Cr ₂ Ge ₂ Te ₆ inverse resistance phase-change material. Materials Advances, 2020, 1, 2426-2432.	5.4	9
22	Mixed-conduction mechanism of Cr2Ge2Te6 film enabling positive temperature dependence of electrical conductivity and seebeck coefficient. Results in Materials, 2020, 8, 100155.	1.8	8
23	The importance of contacts in Cu2GeTe3 phase change memory devices. Journal of Applied Physics, 2020, 128, .	2.5	11
24	Sequential two-stage displacive transformation from β to α via β′ phase in polymorphic MnTe film. Materials and Design, 2020, 196, 109141.	7.0	7
25	High-quality sputter-grown layered chalcogenide films for phase change memory applications and beyond. Journal Physics D: Applied Physics, 2020, 53, 284002.	2.8	23
26	Structure of amorphous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Cu</mml:mi> <mml and the implications for its phase-change properties. Physical Review B, 2020, 101, .</mml </mml:msub></mml:mrow></mml:math 	:mn 32 <td>ml:ໝາ></td>	ml:ໝາ>
27	Reversible displacive transformation in MnTe polymorphic semiconductor. Nature Communications, 2020, 11, 85.	12.8	34
28	Texture Formation through Thermomechanical Treatment and Its Effect on Superelasticity in Mg–Sc Shape Memory Alloy. Materials Transactions, 2020, 61, 2270-2275.	1.2	10
29	Texture Formation through Thermomechanical Treatment and Its Effect on Superelasticity in Mg-Sc Shape Memory Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 253-259.	0.4	1
30	Possibility of Cu ₂ Mg for Liner-Barrier Free Interconnects. , 2020, , .		0
31	Relation between density and optical contrasts upon crystallization in Cr ₂ Ge ₂ Te ₆ phase-change material: coexistence of a positive optical contrast and a negative density contrast. Journal Physics D: Applied Physics, 2019, 52, 325111.	2.8	10
32	Cr-Triggered Local Structural Change in Cr ₂ Ge ₂ Te ₆ Phase Change Material. ACS Applied Materials & Interfaces, 2019, 11, 43320-43329.	8.0	26
33	Liner- and barrier-free NiAl metallization: A perspective from TDDB reliability and interface status. Applied Surface Science, 2019, 497, 143810.	6.1	13
34	Improvement of Powdering Resistance of Zn-Fe Galvannealed Coating by Controlling of Its Composition and Microstructure: Verification with Sputtering Method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 724-732.	0.4	0
35	Ordering of the bcc Phase in a Mg-Sc Binary Alloy by Aging Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3044-3047.	2.2	10
36	CuAl2 thin films as a low-resistivity interconnect material for advanced semiconductor devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	1.2	21

#	Article	IF	CITATIONS
37	Room temperature superelasticity in a lightweight shape memory Mg alloy. Scripta Materialia, 2019, 168, 114-118.	5.2	28
38	Systematic materials design for phase-change memory with small density changes for high-endurance non-volatile memory applications. Applied Physics Express, 2019, 12, 051008.	2.4	7
39	Bidirectional Selector Utilizing Hybrid Diodes for PCRAM Applications. Scientific Reports, 2019, 9, 20209.	3.3	15
40	Electrical transport mechanism of the amorphous phase in Cr ₂ Ge ₂ Te ₆ phase change material. Journal Physics D: Applied Physics, 2019, 52, 105103.	2.8	16
41	Aging precipitation kinetics of Mg-Sc alloy with bcc+hcp two-phase. Journal of Alloys and Compounds, 2018, 747, 854-860.	5.5	17
42	Martensitic Transformation in a β-Type Mg–Sc Alloy. Shape Memory and Superelasticity, 2018, 4, 167-173.	2.2	28
43	Inverse Resistance Change Cr ₂ Ge ₂ Te ₆ -Based PCRAM Enabling Ultralow-Energy Amorphization. ACS Applied Materials & Interfaces, 2018, 10, 2725-2734.	8.0	85
44	Co and CoTi x for contact plug and barrier layer in integrated circuits. Microelectronic Engineering, 2018, 189, 78-84.	2.4	20
45	Understanding the fast phase-change mechanism of tetrahedrally bonded <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml: : Comprehensive analyses of electronic structure and transport phenomena. Physical Review B, 2018, 97.</mml: </mml:msub></mml:mrow></mml:math 	mn ₃ 23.2	ml:mu> < /mm
46	Investigation of bias polarity dependence of set operation in GeCu ₂ Te ₃ phase change memory. Electronics Letters, 2018, 54, 350-351.	1.0	2
47	Optical and Electrical Properties of α-MnTe Thin Films Deposited Using RF Magnetron Sputtering. Materials Transactions, 2018, 59, 1506-1512.	1.2	14
48	NiAl as a potential material for liner- and barrier-free interconnect in ultrasmall technology node. Applied Physics Letters, 2018, 113, .	3.3	26
49	Crystallization mechanism and kinetics of Cr2Ge2Te6 phase change material. MRS Communications, 2018, 8, 1167-1172.	1.8	14
50	Contact resistance change memory using N-doped Cr2Ge2Te6 phase-change material showing non-bulk resistance change. Applied Physics Letters, 2018, 112, .	3.3	28
51	New Contact Metallization Scheme for FinFET and Beyond. , 2018, , .		2
52	Enhanced fatigue properties of cast AZ80 Mg alloy processed by cyclic torsion and low-temperature annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 52-59.	5.6	32
53	Molybdenum oxide-base phase change resistive switching material. Applied Physics Letters, 2017, 111, .	3.3	8
54	Feasibility study of Cu paste printing technique to fill deep via holes for low cost 3D TSV applications.		1

, 2017, , .

#	Article	IF	CITATIONS
55	Electronic Structure of Transition-Metal Based Cu ₂ GeTe ₃ Phase Change Material: Revealing the Key Role of Cu <i>d</i> Electrons. Chemistry of Materials, 2017, 29, 7440-7449.	6.7	24
56	Texture randomization of hexagonal close packed phase through hexagonal close packed/body centered cubic phase transformation in Mg-Sc alloy. Scripta Materialia, 2017, 128, 27-31.	5.2	17
57	Material innovation for MOL, BEOL, and 3D integration. , 2017, , .		8
58	Effect of Cu Content on Hardness and Wear Properties in ï¼^Cr, Mo, Cu)N Film. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 270-275.	0.4	1
59	Implementation of pulse timing discriminator functionality into a GeSbTe/GeCuTe double layer structure. Optics Express, 2017, 25, 26825.	3.4	1
60	Effect of Initial Microstructure on Stress-Strain Behavior in Mg-Sc-Zn Based Alloy with High Sc Content. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 276-281.	0.4	3
61	Baking temperature dependence of Cu paste on A1-BSF cell properties. , 2017, , .		0
62	Investigation of an erasing method for synaptic behaviour in a phase change device using Ge 1 Cu 2 Te 3 (GCT). Electronics Letters, 2016, 52, 1514-1516.	1.0	7
63	Effect of surface cleaning on contact resistivity of amorphous GeCu2Te3 to a W electrode. MRS Advances, 2016, 1, 2731-2736.	0.9	2
64	Determination of αĴî² phase boundaries and mechanical characterization of Mg-Sc binary alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 335-341.	5.6	41
65	Crystal Orientation Changing Behavior During Erichsen Test in Mg-Y Dilute Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 515-520.	0.4	2
66	Hardness and Wear Properties of Ti-Mo-C-N Film. Materials Transactions, 2016, 57, 362-367.	1.2	4
67	Aging Effect of Mg-Sc Alloy with α+β Two-Phase Microstructure. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 171-175.	0.4	9
68	Study on Fatigue Mechanism of Mg-0.6at%Y Alloy by Cyclic Tensile Test. , 2016, , 299-303.		0
69	Structure and thermoelectric properties of PbTe films deposited by thermal evaporation method. , 2016, , .		1
70	Internal microstructure observation of enhanced grain-boundary sliding at room temperature in AZ31 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 94-99.	5.6	23
71	Stress-strain hysteresis and strain hardening during cyclic tensile test of Mg-0.6at%Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 235-242.	5.6	22
72	A lightweight shape-memory magnesium alloy. Science, 2016, 353, 368-370.	12.6	162

#	Article	IF	CITATIONS
73	Amorphous Co-Ti alloy as a single layer barrier for Co local interconnect structure. , 2016, , .		10
74	Impact of contact resistance on memory window in phase-change random access memory (PCRAM). Journal of Computational Electronics, 2016, 15, 1570-1576.	2.5	3
75	Aging Effect of Mg-Sc Alloy with α+β Two-Phase Microstructure. Materials Transactions, 2016, 57, 1119-1123.	1.2	13
76	Contact resistivity of amorphous and crystalline GeCu2Te3 to W electrode for phase change random access memory. Materials Science in Semiconductor Processing, 2016, 47, 1-6.	4.0	24
77	XAFS Analysis of Crystal GeCu ₂ Te ₃ Phase Change Material. Zeitschrift Fur Physikalische Chemie, 2016, 230, 433-443.	2.8	4
78	Electrical Contact Property of GeCu2Te3 Phase Change Material to Electrode. ECS Meeting Abstracts, 2016, , .	0.0	0
79	(Invited) Ge-Cu-Te Phase Change Material for Pcram Application. ECS Meeting Abstracts, 2016, , .	0.0	0
80	Age-Hardening of Dual Phase Mg-Sc Alloy at 573 K. , 2016, , 147-149.		0
81	Hardness and Wear Properties of Ti-Mo-C-N Film. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 220-226.	0.4	0
82	Recrystallization process and texture change of Mg–Y alloy rolled sheet. Keikinzoku/Journal of Japan Institute of Light Metals, 2015, 65, 259-262.	0.4	1
83	Crystallization processes of Sb100â^'xZnx (0 ≤ ≤70) amorphous films for use as phase change memory materials. AIP Advances, 2015, 5, 097151.	1.3	5
84	Novel device structure for phase change memory toward low-current operation. Japanese Journal of Applied Physics, 2015, 54, 094302.	1.5	5
85	Wear and oxidation behavior of reactive sputtered δ-(Ti,Mo)N films deposited at different nitrogen gas flow rates. Tribology International, 2015, 87, 32-39.	5.9	14
86	Age-hardening effect by phase transformation of high Sc containing Mg alloy. Materials Letters, 2015, 161, 5-8.	2.6	40
87	Diffusion barrier property of MnSixOy layer formed by chemical vapor deposition for Cu advanced interconnect application. Thin Solid Films, 2015, 580, 56-60.	1.8	18
88	Microstructure, hardness and wear resistance of reactive sputtered Mo–O–N films on stainless steel substrate. Surface and Coatings Technology, 2015, 280, 1-7.	4.8	3
89	Feasibility of Cu-Al-Mn superelastic alloy bar as a self-sensor material. Journal of Intelligent Material Systems and Structures, 2015, 26, 364-370.	2.5	3
90	Multiple phase change structure for the scalable phase change random access memory array. Japanese Journal of Applied Physics, 2014, 53, 041801.	1.5	0

#	Article	IF	CITATIONS
91	Chronological change of electrical resistance in GeCu ₂ Te ₃ amorphous film induced by surface oxidation. Journal Physics D: Applied Physics, 2014, 47, 475302.	2.8	7
92	Reflow behavior of Cu–Mn in LSI line patterns. Japanese Journal of Applied Physics, 2014, 53, 05GA09.	1.5	3
93	Formation behavior and adhesion property of metallic Mn layer on porous SiOC by chemical vapor deposition. Japanese Journal of Applied Physics, 2014, 53, 05GA10.	1.5	3
94	The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 145-152.	5.6	130
95	Barrier Properties of CVD Mn Oxide Layer to Cu Diffusion for 3-D TSV. IEEE Electron Device Letters, 2014, 35, 114-116.	3.9	19
96	Phase Change Characteristics in GeTe–CuTe Pseudobinary Alloy Films. Journal of Physical Chemistry C, 2014, 118, 26973-26980.	3.1	24
97	A Study on Phase Transition Characteristics of Ge-Cu-Te Film for Phase Change Random Access Memory. Materia Japan, 2014, 53, 45-51.	0.1	0
98	Effects of O ₂ and N ₂ Flow Rate on the Electrical Properties of Fe-O-N Thin Films. Materials Transactions, 2014, 55, 1606-1610.	1.2	5
99	Friction Properties of Medical Metallic Alloys on Soft Tissue–Mimicking Poly(Vinyl Alcohol) Hydrogel Biomodel. Tribology Letters, 2013, 51, 311-321.	2.6	13
100	Investigation of a selective switching device using a phase-change material for a 3-dimensional PCRAM array. Journal of the Korean Physical Society, 2013, 62, 1258-1263.	0.7	2
101	Abnormal Grain Growth Induced by Cyclic Heat Treatment. Science, 2013, 341, 1500-1502.	12.6	216
102	Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Materialia, 2013, 61, 3842-3850.	7.9	122
103	Fourfold coordinated Te atoms in amorphous GeCu2Te3 phase change material. Scripta Materialia, 2013, 68, 122-125.	5.2	31
104	Structural Characterization of a Manganese Oxide Barrier Layer Formed by Chemical Vapor Deposition for Advanced Interconnects Application on SiOC Dielectric Substrates. Journal of Physical Chemistry C, 2013, 117, 160-164.	3.1	10
105	Effectiveness of superelastic bars for seismic rehabilitation of clayâ€unit masonry walls. Earthquake Engineering and Structural Dynamics, 2013, 42, 725-741.	4.4	14
106	Effect of CVD Mn oxide layer as Cu diffusion barrier for TSV. , 2013, , .		2
107	Optical contrast and laser-induced phase transition in GeCu2Te3 thin film. Applied Physics Letters, 2013, 102, .	3.3	51
108	Origin of the unusual reflectance and density contrasts in the phase-change material Cu ₂ GeTe ₃ . Applied Physics Letters, 2013, 102, 224105.	3.3	37

#	Article	IF	CITATIONS
109	Feasibility of Cu–Al–Mn superelastic alloy bars as reinforcement elements in concrete beams. Smart Materials and Structures, 2013, 22, 025025.	3.5	55
110	Simultaneous Formation of a Metallic Mn Layer and a MnOx/MnSixOyBarrier Layer by Chemical Vapor Deposition at 250 °C. Japanese Journal of Applied Physics, 2013, 52, 05FA02.	1.5	9
111	The Electrical and Optical Properties of Fe–O–N Thin Films Deposited by RF Magnetron Sputtering. Materials Transactions, 2013, 54, 2055-2058.	1.2	5
112	Effects of Si addition on the crystallization behaviour of GeTe phase change materials. Journal Physics D: Applied Physics, 2012, 45, 405302.	2.8	11
113	The Thickness-Ratio Effects of Ni/Nb Electrode on Wire Bonding Strength with N-Type 4H-SiC. Materials Science Forum, 2012, 717-720, 829-832.	0.3	0
114	Multiresistance Characteristics of PCRAM With \$ hbox{Ge}_{1}hbox{Cu}_{2}hbox{Te}_{3}\$ and \$hbox{Ge}_{2} hbox{Sb}_{2}hbox{Te}_{5}\$ Films. IEEE Electron Device Letters, 2012, 33, 1399-1401.	3.9	7
115	Fast crystal nucleation induced by surface oxidation in Si-doped GeTe amorphous thin film. Applied Physics Letters, 2012, 100, .	3.3	8
116	Rate-dependent response of superelastic Cu–Al–Mn alloy rods to tensile cyclic loads. Smart Materials and Structures, 2012, 21, 032002.	3.5	32
117	Improved microstructure and ohmic contact of Nb electrode on n-type 4H-SiC. Thin Solid Films, 2012, 520, 6922-6928.	1.8	15
118	Application of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams. , 2012, , .		3
119	Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials. Acta Materialia, 2012, 60, 872-880.	7.9	73
120	Crystallization behavior and resistance change in eutectic Si15Te85 amorphous films. Thin Solid Films, 2012, 520, 2128-2131.	1.8	4
121	Crystallization and electrical characteristics of Ge1Cu2Te3 films for phase change random access memory. Thin Solid Films, 2012, 520, 4389-4393.	1.8	49
122	Effects of Adsorbed Moisture in SiO ₂ Substrates on the Formation of a Mn Oxide Layer by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2011, 115, 16731-16736.	3.1	24
123	P-23: The Contact Properties and TFT Structures of a-IGZO TFTs Combined with Cu-Mn Alloy Electrodes. Digest of Technical Papers SID International Symposium, 2011, 42, 1177-1180.	0.3	1
124	Effect of Nitrogen Content on the Microstructure and Mechanical Properties of Ti-Mo-N Coating Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3310-3315.	2.2	10
125	Potential of superelastic Cu–Al–Mn alloy bars for seismic applications. Earthquake Engineering and Structural Dynamics, 2011, 40, 107-115.	4.4	102
126	Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions. Earthquake and Structures, 2011, 2, 233-256.	1.0	16

#	Article	IF	CITATIONS
127	Pâ€33: Cuâ€Mn Electrodes for aâ€5i TFT and Its Electrical Characteristics. Digest of Technical Papers SID International Symposium, 2010, 41, 1343-1346.	0.3	8
128	Effect of Heat Treatment on the Hardness of Ti-Mo-N Films Deposited by RF Reactive Magnetron Sputtering. Materials Transactions, 2010, 51, 1467-1473.	1.2	2
129	Effect of Heat Treatment on the Hardness of Ti-Mo-N Coating Films Deposited by RF Reactive Magnetron Sputtering. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 135-141.	0.4	0
130	High-strength Fe–20Mn–Al–C-based Alloys with Low Density. ISIJ International, 2010, 50, 893-899.	1.4	194
131	Ferrous Polycrystalline Shape-Memory Alloy Showing Huge Superelasticity. Science, 2010, 327, 1488-1490.	12.6	441
132	Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scripta Materialia, 2010, 63, 747-750.	5.2	138
133	Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Materialia, 2010, 58, 4316-4324.	7.9	217
134	Crystallization behavior of Ge1Cu2Te3 amorphous film. Materials Research Society Symposia Proceedings, 2010, 1251, 8.	0.1	3
135	Electrical Resistance Change with Crystallization in Si-Te Amorphous Thin Films. Materials Research Society Symposia Proceedings, 2010, 1251, 7.	0.1	0
136	Selective Formation of a SnO2Cap Layer, Its Growth Behavior, and Oxidation Resistance. Japanese Journal of Applied Physics, 2010, 49, 05FA02.	1.5	0
137	Electrical Resistance and Structural Changes on Crystallizaiton Process of Amorphous Ge-Te Thin Films. Materials Research Society Symposia Proceedings, 2009, 1160, 1.	0.1	4
138	Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Materialia, 2009, 57, 5748-5758.	7.9	89
139	Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Materialia, 2009, 57, 5759-5770.	7.9	73
140	Elastic and Superelastic Properties of NiFeCoGa Fibers Grown by Micro-Pulling-Down Method. Materials Transactions, 2009, 50, 934-937.	1.2	20
141	Metamagnetic shape memory effect in NiMn-based Heusler-type alloys. Journal of Materials Chemistry, 2008, 18, 1837.	6.7	96
142	Ductile Cu–Al–Mn based shape memory alloys: General properties and applications. Materials Science and Technology, 2008, 24, 896-901.	1.6	115
143	A simple method to treat an ingrowing toenail with a shapeâ€memory alloy device. Journal of Dermatological Treatment, 2008, 19, 291-292.	2.2	27
144	Effects of Pre-Strain and Heat Treatment Temperature on Phase Transformation Temperature and Shape Recovery Stress of Ti-Ni-Nb Shape Memory Alloys for Pipe Joint Applications. Materials Transactions, 2008, 49, 1650-1655.	1.2	16

#	Article	IF	CITATIONS
145	Bi-Base Composite Solders for Mounting Power Semiconductor Devices. Journal of Japan Institute of Electronics Packaging, 2008, 11, 141-146.	0.1	2
146	Effect of Nb Content on Martensitic Transformation Temperatures and Mechanical Properties of Ti-Ni-Nb Shape Memory Alloys for Pipe Joint Applications. Materials Transactions, 2007, 48, 445-450.	1.2	27
147	Superplasticity of Cu-Al-Mn-Ni Shape Memory Alloy. Materials Transactions, 2007, 48, 2914-2918.	1.2	29
148	Effect of Heat Aging on Thermal and Mechanical Properties of Ti-Ni-Nb Shape Memory Alloy. Materials Transactions, 2007, 48, 439-444.	1.2	3
149	Pd–In–Fe shape memory alloy. Applied Physics Letters, 2007, 90, 261906.	3.3	21
150	Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 759-766.	2.2	268
151	Phase Equilibria and Phase Transition of the Ni–Fe–Ga Ferromagnetic Shape Memory Alloy System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 767-776.	2.2	40
152	Metal Alloy Fibers. , 2007, , 331-333.		3
153	2115 Development of superelastic medical guidewires with functionally graded properties. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 167-168.	0.0	0
154	2117 Superelasticity of Co-Ni-Al ferromagnetic shape memory alloys. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 171-172.	0.0	0
155	Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy. Applied Physics Letters, 2006, 88, 122507.	3.3	254
156	Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Applied Physics Letters, 2006, 88, 192513.	3.3	378
157	Effect of Alloying Elements on fcc/hcp Martensitic Transformation and Shape Memory Properties in Co-Al Alloys. Materials Transactions, 2006, 47, 2381-2386.	1.2	19
158	Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006, 439, 957-960.	27.8	1,631
159	Shape memory and magnetic properties of Co–Al ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1045-1049.	5.6	39
160	Martensitic and magnetic transformations of Ni–Ga–Fe–Co ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 970-973.	5.6	32
161	Mechanical properties of Ti–6at.% Mo–4at.% Sn alloy wires and their application to medical guidewire. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1097-1100.	5.6	22
162	Effects of grain size and texture on damping properties of Cu–Al–Mn-based shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 743-746.	5.6	69

#	Article	IF	CITATIONS
163	Martensitic transformation and shape memory effect in ausaged Fe–Ni–Si–Co alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1030-1035.	5.6	17
164	Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β+γ two-phase structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1054-1060.	5.6	71
165	Experimental determination and thermodynamic calculation of phase equilibria in the Feâ^'Mnâ^'Al system. Journal of Phase Equilibria and Diffusion, 2006, 27, 54-62.	1.4	58
166	Pb-free high temperature solders for power device packaging. Microelectronics Reliability, 2006, 46, 1932-1937.	1.7	87
167	Effect of prestrain on martensitic transformation in a Ti46.4Ni47.6Nb6.0 superelastic alloy and its application to medical stents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 179-183.	3.4	19
168	High maneuverability guidewire with functionally graded properties using new superelastic alloys. Minimally Invasive Therapy and Allied Technologies, 2006, 15, 204-208.	1.2	9
169	Effects of Aging and Co Addition on Martensitic and Magnetic Transitions in Ni–Al–Fe β-based Shape Memory Alloys. ISIJ International, 2006, 46, 1287-1291.	1.4	4
170	Influence of Co Addition on Martensitic and Magnetic Transitions in Ni-Fe-Ga β Based Shape Memory Alloys. Materials Transactions, 2005, 46, 734-737.	1.2	38
171	Damping Properties of Ductile Cu-Al-Mn-Based Shape Memory Alloys. Materials Transactions, 2005, 46, 118-122.	1.2	29
172	Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Materialia, 2005, 53, 4121-4133.	7.9	253
173	Two-way shape memory effect induced by cold-rolling in Ti–Ni and Ti–Ni–Fe alloys. Scripta Materialia, 2005, 52, 311-316.	5.2	36
174	Shape memory effect in the ferromagnetic Co–14at.% Al alloy. Scripta Materialia, 2005, 52, 565-569.	5.2	29
175	Martensitic transformation of Cu–10at.%Al–9at.%Ga–11at.%Mn ferromagnetic β alloy. Scripta Materialia, 2005, 52, 1153-1156.	5.2	7
176	Effective magnetic properties of Fe-NiTi (FSMA) particulate composite. , 2005, , .		2
177	Superelastic Biomedical Guidewire, Functionally Graded. , 2005, , 1-7.		0
178	Stress-strain characteristics in Ni–Ga–Fe ferromagnetic shape memory alloys. Applied Physics Letters, 2004, 84, 1275-1277.	3.3	133
179	Microstructure and thermal expansion properties of invar-type Cu-Zn-Al shape memory alloys. Journal of Electronic Materials, 2004, 33, 1098-1102.	2.2	8
180	Development of medical guide wire of Cu-Al-Mn-base superelastic alloy with functionally graded characteristics. Journal of Biomedical Materials Research Part B, 2004, 69B, 64-69.	3.1	53

#	Article	IF	CITATIONS
181	Phase transformations in Ni–Ga–Fe ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 403-408.	5.6	81
182	Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 278-282.	5.6	144
183	Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals. Acta Materialia, 2004, 52, 5083-5091.	7.9	65
184	Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys. Applied Physics Letters, 2004, 85, 4358.	3.3	990
185	Martensitic Transformation and Magnetic Properties of Cu-Ga-Mn β Alloys. Materials Transactions, 2004, 45, 2780-2784.	1.2	28
186	Magnetic field-induced reversible actuation using ferromagnetic shape memory alloys. Scripta Materialia, 2003, 48, 1415-1419.	5.2	15
187	Martensitic transformation behavior under magnetic field in Co-Ni-Al ferromagnetic shape memory alloys. , 2003, , .		5
188	é«~åŠå·¥æ€§Cu-Al-Mn基形状è`~憶å•́金ã®é−‹ç™º. Materia Japan, 2003, 42, 813-821.	0.1	6
189	Shape Memory Effect Associated with FCC—HCP Martensitic Transformation in Co-Al Alloys. Materials Transactions, 2003, 44, 2732-2735.	1.2	19
190	Effect of microstructure on two-way shape memory effect in Cu-A1-Mn alloys. European Physical Journal Special Topics, 2003, 112, 507-510.	0.2	6
191	Development of the Co-Ni-AI ferromagnetic shape memory alloys. European Physical Journal Special Topics, 2003, 112, 1017-1020.	0.2	27
192	Effect of grain size and texture on superelasticity of Cu-AI-Mn-based shape memory alloys. European Physical Journal Special Topics, 2003, 112, 511-514.	0.2	25
193	Invar-type effect induced by cold-rolling deformation in shape memory alloys. Applied Physics Letters, 2002, 80, 4348-4350.	3.3	53
194	Magnetic and Martensitic Phase Transformations in a Ni ₅₄ Ga ₂₇ Fe ₁₉ Alloy. Materials Transactions, 2002, 43, 2360-2362.	1.2	120
195	Two-Way Shape Memory Effect Induced by Bending Deformation in Ductile Cu-Al-Mn Alloys. Materials Transactions, 2002, 43, 1676-1683.	1.2	29
196	Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 2817-2824.	2.2	124
197	Effect of grain refinement on the mechanical and shape memory properties of Cu-Al-Mn base alloys. European Physical Journal Special Topics, 2001, 11, Pr8-185-Pr8-190.	0.2	11
198	Ordering, Martensitic and Ferromagnetic Transformations in Ni–Al–Mn Heusler Shape Memory Alloys. Materials Transactions, JIM, 2000, 41, 943-949.	0.9	94

#	Article	IF	CITATIONS
199	Effect of Co Addition on the Ordering and Martensitic Transformations in Cu-Al-Mn Shape Memory Alloys. Materials Science Forum, 2000, 327-328, 473-476.	0.3	3
200	Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 375-379.	5.6	84
201	Magnetic transformation of Ni2AlMn heusler-type shape memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2721-2723.	2.2	78
202	Ordering and martensitic transformations of Ni2AlMn heusler alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2225-2227.	2.2	55
203	Resistive Switching Behavior in Undoped α-Fe ₂ O ₃ Film with a Low Resistivity. Advances in Science and Technology, 0, , .	0.2	2
204	Layerâ€dependent effects of interfacial phase change memory for an artificial synapse. Physica Status Solidi - Rapid Research Letters, 0, , .	2.4	2
205	Shortâ€Range Order Investigation of CuxGe50â~'xTe50 Phaseâ€Change Materials. Physica Status Solidi (B): Basic Research, 0, , 2100619.	1.5	2