Yuji Sutou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3864290/publications.pdf Version: 2024-02-01

76326 40979 9,484 205 40 93 citations h-index g-index papers 210 210 210 4690 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006, 439, 957-960.	27.8	1,631
2	Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys. Applied Physics Letters, 2004, 85, 4358.	3.3	990
3	Ferrous Polycrystalline Shape-Memory Alloy Showing Huge Superelasticity. Science, 2010, 327, 1488-1490.	12.6	441
4	Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Applied Physics Letters, 2006, 88, 192513.	3.3	378
5	Martensitic and Magnetic Transformation Behaviors in Heusler-Type NiMnIn and NiCoMnIn Metamagnetic Shape Memory Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 759-766.	2.2	268
6	Effect of magnetic field on martensitic transition of Ni46Mn41In13 Heusler alloy. Applied Physics Letters, 2006, 88, 122507.	3.3	254
7	Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire. Acta Materialia, 2005, 53, 4121-4133.	7.9	253
8	Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Materialia, 2010, 58, 4316-4324.	7.9	217
9	Abnormal Grain Growth Induced by Cyclic Heat Treatment. Science, 2013, 341, 1500-1502.	12.6	216
10	High-strength Fe–20Mn–Al–C-based Alloys with Low Density. ISIJ International, 2010, 50, 893-899.	1.4	194
11	A lightweight shape-memory magnesium alloy. Science, 2016, 353, 368-370.	12.6	162
12	Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 278-282.	5.6	144
13	Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 Mg alloys. Scripta Materialia, 2010, 63, 747-750.	5.2	138
14	Stress-strain characteristics in Ni–Ga–Fe ferromagnetic shape memory alloys. Applied Physics Letters, 2004, 84, 1275-1277.	3.3	133
15	The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 145-152.	5.6	130
16	Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 2817-2824.	2.2	124
17	Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Materialia, 2013, 61, 3842-3850.	7.9	122
18	Magnetic and Martensitic Phase Transformations in a Ni ₅₄ Ga ₂₇ Fe ₁₉ Alloy. Materials Transactions, 2002, 43, 2360-2362.	1.2	120

#	Article	IF	CITATIONS
19	Ductile Cu–Al–Mn based shape memory alloys: General properties and applications. Materials Science and Technology, 2008, 24, 896-901.	1.6	115
20	Potential of superelastic Cu–Al–Mn alloy bars for seismic applications. Earthquake Engineering and Structural Dynamics, 2011, 40, 107-115.	4.4	102
21	Metamagnetic shape memory effect in NiMn-based Heusler-type alloys. Journal of Materials Chemistry, 2008, 18, 1837.	6.7	96
22	Ordering, Martensitic and Ferromagnetic Transformations in Ni–Al–Mn Heusler Shape Memory Alloys. Materials Transactions, JIM, 2000, 41, 943-949.	0.9	94
23	Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Materialia, 2009, 57, 5748-5758.	7.9	89
24	Pb-free high temperature solders for power device packaging. Microelectronics Reliability, 2006, 46, 1932-1937.	1.7	87
25	Inverse Resistance Change Cr ₂ Ge ₂ Te ₆ -Based PCRAM Enabling Ultralow-Energy Amorphization. ACS Applied Materials & Interfaces, 2018, 10, 2725-2734.	8.0	85
26	Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 375-379.	5.6	84
27	Phase transformations in Ni–Ga–Fe ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 403-408.	5.6	81
28	Magnetic transformation of Ni2AlMn heusler-type shape memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2721-2723.	2.2	78
29	Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Materialia, 2009, 57, 5759-5770.	7.9	73
30	Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials. Acta Materialia, 2012, 60, 872-880.	7.9	73
31	Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β+γ two-phase structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1054-1060.	5.6	71
32	Effects of grain size and texture on damping properties of Cu–Al–Mn-based shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 743-746.	5.6	69
33	Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals. Acta Materialia, 2004, 52, 5083-5091.	7.9	65
34	Experimental determination and thermodynamic calculation of phase equilibria in the Feâ^'Mnâ^'Al system. Journal of Phase Equilibria and Diffusion, 2006, 27, 54-62.	1.4	58
35	Ordering and martensitic transformations of Ni2AlMn heusler alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2225-2227.	2.2	55
36	Feasibility of Cu–Al–Mn superelastic alloy bars as reinforcement elements in concrete beams. Smart Materials and Structures, 2013, 22, 025025.	3.5	55

#	Article	IF	CITATIONS
37	Invar-type effect induced by cold-rolling deformation in shape memory alloys. Applied Physics Letters, 2002, 80, 4348-4350.	3.3	53
38	Development of medical guide wire of Cu-Al-Mn-base superelastic alloy with functionally graded characteristics. Journal of Biomedical Materials Research Part B, 2004, 69B, 64-69.	3.1	53
39	Optical contrast and laser-induced phase transition in GeCu2Te3 thin film. Applied Physics Letters, 2013, 102, .	3.3	51
40	Crystallization and electrical characteristics of Ge1Cu2Te3 films for phase change random access memory. Thin Solid Films, 2012, 520, 4389-4393.	1.8	49
41	Determination of α/β phase boundaries and mechanical characterization of Mg-Sc binary alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 335-341.	5.6	41
42	Phase Equilibria and Phase Transition of the Ni–Fe–Ga Ferromagnetic Shape Memory Alloy System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 767-776.	2.2	40
43	Age-hardening effect by phase transformation of high Sc containing Mg alloy. Materials Letters, 2015, 161, 5-8.	2.6	40
44	Shape memory and magnetic properties of Co–Al ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1045-1049.	5.6	39
45	Influence of Co Addition on Martensitic and Magnetic Transitions in Ni-Fe-Ga β Based Shape Memory Alloys. Materials Transactions, 2005, 46, 734-737.	1.2	38
46	Origin of the unusual reflectance and density contrasts in the phase-change material Cu ₂ GeTe ₃ . Applied Physics Letters, 2013, 102, 224105.	3.3	37
47	Two-way shape memory effect induced by cold-rolling in Ti–Ni and Ti–Ni–Fe alloys. Scripta Materialia, 2005, 52, 311-316.	5.2	36
48	Reversible displacive transformation in MnTe polymorphic semiconductor. Nature Communications, 2020, 11, 85.	12.8	34
49	Martensitic and magnetic transformations of Ni–Ga–Fe–Co ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 970-973.	5.6	32
50	Rate-dependent response of superelastic Cu–Al–Mn alloy rods to tensile cyclic loads. Smart Materials and Structures, 2012, 21, 032002.	3.5	32
51	Enhanced fatigue properties of cast AZ80 Mg alloy processed by cyclic torsion and low-temperature annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 52-59.	5.6	32
52	Fourfold coordinated Te atoms in amorphous GeCu2Te3 phase change material. Scripta Materialia, 2013, 68, 122-125.	5.2	31
53	Two-Way Shape Memory Effect Induced by Bending Deformation in Ductile Cu-Al-Mn Alloys. Materials Transactions, 2002, 43, 1676-1683.	1.2	29
54	Damping Properties of Ductile Cu-Al-Mn-Based Shape Memory Alloys. Materials Transactions, 2005, 46, 118-122.	1.2	29

#	Article	IF	CITATIONS
55	Shape memory effect in the ferromagnetic Co–14at.% Al alloy. Scripta Materialia, 2005, 52, 565-569.	5.2	29
56	Superplasticity of Cu-Al-Mn-Ni Shape Memory Alloy. Materials Transactions, 2007, 48, 2914-2918.	1.2	29
57	Martensitic Transformation and Magnetic Properties of Cu-Ga-Mn β Alloys. Materials Transactions, 2004, 45, 2780-2784.	1.2	28
58	Martensitic Transformation in a β-Type Mg–Sc Alloy. Shape Memory and Superelasticity, 2018, 4, 167-173.	2.2	28
59	Contact resistance change memory using N-doped Cr2Ge2Te6 phase-change material showing non-bulk resistance change. Applied Physics Letters, 2018, 112, .	3.3	28
60	Room temperature superelasticity in a lightweight shape memory Mg alloy. Scripta Materialia, 2019, 168, 114-118.	5.2	28
61	Development of the Co-Ni-Al ferromagnetic shape memory alloys. European Physical Journal Special Topics, 2003, 112, 1017-1020.	0.2	27
62	Effect of Nb Content on Martensitic Transformation Temperatures and Mechanical Properties of Ti-Ni-Nb Shape Memory Alloys for Pipe Joint Applications. Materials Transactions, 2007, 48, 445-450.	1.2	27
63	A simple method to treat an ingrowing toenail with a shapeâ€memory alloy device. Journal of Dermatological Treatment, 2008, 19, 291-292.	2.2	27
64	NiAl as a potential material for liner- and barrier-free interconnect in ultrasmall technology node. Applied Physics Letters, 2018, 113, .	3.3	26
65	Cr-Triggered Local Structural Change in Cr ₂ Ge ₂ Te ₆ Phase Change Material. ACS Applied Materials & Interfaces, 2019, 11, 43320-43329.	8.0	26
66	Effect of grain size and texture on superelasticity of Cu-Al-Mn-based shape memory alloys. European Physical Journal Special Topics, 2003, 112, 511-514.	0.2	25
67	Effects of Adsorbed Moisture in SiO ₂ Substrates on the Formation of a Mn Oxide Layer by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2011, 115, 16731-16736.	3.1	24
68	Phase Change Characteristics in GeTe–CuTe Pseudobinary Alloy Films. Journal of Physical Chemistry C, 2014, 118, 26973-26980.	3.1	24
69	Contact resistivity of amorphous and crystalline GeCu2Te3 to W electrode for phase change random access memory. Materials Science in Semiconductor Processing, 2016, 47, 1-6.	4.0	24
70	Electronic Structure of Transition-Metal Based Cu ₂ GeTe ₃ Phase Change Material: Revealing the Key Role of Cu <i>d</i> Electrons. Chemistry of Materials, 2017, 29, 7440-7449.	6.7	24
71	Internal microstructure observation of enhanced grain-boundary sliding at room temperature in AZ31 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 666, 94-99.	5.6	23
72	High-quality sputter-grown layered chalcogenide films for phase change memory applications and beyond. Journal Physics D: Applied Physics, 2020, 53, 284002.	2.8	23

#	Article	IF	CITATIONS
73	Mechanical properties of Ti–6at.% Mo–4at.% Sn alloy wires and their application to medical guidewire. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1097-1100.	5.6	22
74	Stress-strain hysteresis and strain hardening during cyclic tensile test of Mg-0.6at%Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 235-242.	5.6	22
75	Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS ₂ : Implications for 2D Electronic Devices. ACS Applied Nano Materials, 2021, 4, 8834-8844.	5.0	22
76	Pd–In–Fe shape memory alloy. Applied Physics Letters, 2007, 90, 261906.	3.3	21
77	CuAl2 thin films as a low-resistivity interconnect material for advanced semiconductor devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	1.2	21
78	Elastic and Superelastic Properties of NiFeCoGa Fibers Grown by Micro-Pulling-Down Method. Materials Transactions, 2009, 50, 934-937.	1.2	20
79	Co and CoTi x for contact plug and barrier layer in integrated circuits. Microelectronic Engineering, 2018, 189, 78-84.	2.4	20
80	Shape Memory Effect Associated with FCC—HCP Martensitic Transformation in Co-Al Alloys. Materials Transactions, 2003, 44, 2732-2735.	1.2	19
81	Effect of Alloying Elements on fcc/hcp Martensitic Transformation and Shape Memory Properties in Co-Al Alloys. Materials Transactions, 2006, 47, 2381-2386.	1.2	19
82	Effect of prestrain on martensitic transformation in a Ti46.4Ni47.6Nb6.0 superelastic alloy and its application to medical stents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 179-183.	3.4	19
83	Barrier Properties of CVD Mn Oxide Layer to Cu Diffusion for 3-D TSV. IEEE Electron Device Letters, 2014, 35, 114-116.	3.9	19
84	Diffusion barrier property of MnSixOy layer formed by chemical vapor deposition for Cu advanced interconnect application. Thin Solid Films, 2015, 580, 56-60.	1.8	18
85	Martensitic transformation and shape memory effect in ausaged Fe–Ni–Si–Co alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1030-1035.	5.6	17
86	Texture randomization of hexagonal close packed phase through hexagonal close packed/body centered cubic phase transformation in Mg-Sc alloy. Scripta Materialia, 2017, 128, 27-31.	5.2	17
87	Aging precipitation kinetics of Mg-Sc alloy with bcc+hcp two-phase. Journal of Alloys and Compounds, 2018, 747, 854-860.	5.5	17
88	Effects of Pre-Strain and Heat Treatment Temperature on Phase Transformation Temperature and Shape Recovery Stress of Ti-Ni-Nb Shape Memory Alloys for Pipe Joint Applications. Materials Transactions, 2008, 49, 1650-1655.	1.2	16
89	Electrical transport mechanism of the amorphous phase in Cr ₂ Ge ₂ Te ₆ phase change material. Journal Physics D: Applied Physics, 2019, 52, 105103.	2.8	16
90	Dimensional transformation of chemical bonding during crystallization in a layered chalcogenide material. Scientific Reports, 2021, 11, 4782.	3.3	16

#	Article	IF	CITATIONS
91	Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions. Earthquake and Structures, 2011, 2, 233-256.	1.0	16
92	Magnetic field-induced reversible actuation using ferromagnetic shape memory alloys. Scripta Materialia, 2003, 48, 1415-1419.	5.2	15
93	Improved microstructure and ohmic contact of Nb electrode on n-type 4H-SiC. Thin Solid Films, 2012, 520, 6922-6928.	1.8	15
94	Bidirectional Selector Utilizing Hybrid Diodes for PCRAM Applications. Scientific Reports, 2019, 9, 20209.	3.3	15
95	Effectiveness of superelastic bars for seismic rehabilitation of clayâ€unit masonry walls. Earthquake Engineering and Structural Dynamics, 2013, 42, 725-741.	4.4	14
96	Wear and oxidation behavior of reactive sputtered δ-(Ti,Mo)N films deposited at different nitrogen gas flow rates. Tribology International, 2015, 87, 32-39.	5.9	14
97	Optical and Electrical Properties of α-MnTe Thin Films Deposited Using RF Magnetron Sputtering. Materials Transactions, 2018, 59, 1506-1512.	1.2	14
98	Crystallization mechanism and kinetics of Cr2Ge2Te6 phase change material. MRS Communications, 2018, 8, 1167-1172.	1.8	14
99	Interdiffusion reliability and resistivity scaling of intermetallic compounds as advanced interconnect materials. Journal of Applied Physics, 2021, 129, .	2.5	14
100	Friction Properties of Medical Metallic Alloys on Soft Tissue–Mimicking Poly(Vinyl Alcohol) Hydrogel Biomodel. Tribology Letters, 2013, 51, 311-321.	2.6	13
101	Aging Effect of Mg-Sc Alloy with α+β Two-Phase Microstructure. Materials Transactions, 2016, 57, 1119-1123.	1.2	13
102	Liner- and barrier-free NiAl metallization: A perspective from TDDB reliability and interface status. Applied Surface Science, 2019, 497, 143810.	6.1	13
103	Application of deep neural network learning in composites design. European Journal of Materials, 2022, 2, 117-170.	2.6	12
104	Effect of grain refinement on the mechanical and shape memory properties of Cu-Al-Mn base alloys. European Physical Journal Special Topics, 2001, 11, Pr8-185-Pr8-190.	0.2	11
105	Effects of Si addition on the crystallization behaviour of GeTe phase change materials. Journal Physics D: Applied Physics, 2012, 45, 405302.	2.8	11
106	Understanding the fast phase-change mechanism of tetrahedrally bonded <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Cu</mml:mi> <mml:n : Comprehensive analyses of electronic structure and transport phenomena. Physical Review B, 2018, 97</mml:n </mml:msub></mml:mrow></mml:math 	າກ _{3.2} <td>ıl:mn></td>	ıl:mn>
107	The importance of contacts in Cu2GeTe3 phase change memory devices. Journal of Applied Physics, 2020, 128, .	2.5	11

108 Potential of low-resistivity Cu2Mg for highly scaled interconnects and its challenges. Applied Surface Science, 2021, 537, 148035.

6.1 11

#	Article	IF	CITATIONS
109	Effect of Nitrogen Content on the Microstructure and Mechanical Properties of Ti-Mo-N Coating Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3310-3315.	2.2	10
110	Structural Characterization of a Manganese Oxide Barrier Layer Formed by Chemical Vapor Deposition for Advanced Interconnects Application on SiOC Dielectric Substrates. Journal of Physical Chemistry C, 2013, 117, 160-164.	3.1	10
111	Amorphous Co-Ti alloy as a single layer barrier for Co local interconnect structure. , 2016, , .		10
112	Relation between density and optical contrasts upon crystallization in Cr ₂ Ge ₂ Te ₆ phase-change material: coexistence of a positive optical contrast and a negative density contrast. Journal Physics D: Applied Physics, 2019, 52, 325111.	2.8	10
113	Ordering of the bcc Phase in a Mg-Sc Binary Alloy by Aging Treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3044-3047.	2.2	10
114	Structure of amorphous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Cu</mml:mi> <mml: and the implications for its phase-change properties. Physical Review B, 2020, 101, .</mml: </mml:msub></mml:mrow></mml:math 	mn 32 <td>ml:monə></td>	ml:monə>
115	Low resistance-drift characteristics in Cr2Ge2Te6-based phase change memory devices with a high-resistance crystalline phase. Materials Science in Semiconductor Processing, 2021, 133, 105961.	4.0	10
116	Texture Formation through Thermomechanical Treatment and Its Effect on Superelasticity in Mg–Sc Shape Memory Alloy. Materials Transactions, 2020, 61, 2270-2275.	1.2	10
117	Design strategy of phase change material properties for low-energy memory application. Materials and Design, 2022, 216, 110560.	7.0	10
118	High maneuverability guidewire with functionally graded properties using new superelastic alloys. Minimally Invasive Therapy and Allied Technologies, 2006, 15, 204-208.	1.2	9
119	Simultaneous Formation of a Metallic Mn Layer and a MnOx/MnSixOyBarrier Layer by Chemical Vapor Deposition at 250 °C. Japanese Journal of Applied Physics, 2013, 52, 05FA02.	1.5	9
120	Aging Effect of Mg-Sc Alloy with α+β Two-Phase Microstructure. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 171-175.	0.4	9
121	Nitrogen doping-induced local structure change in a Cr ₂ Ge ₂ Te ₆ inverse resistance phase-change material. Materials Advances, 2020, 1, 2426-2432.	5.4	9
122	Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: amorphous, 1T′ and 2H phases. Journal of Materials Chemistry C, 2022, 10, 10627-10635.	5.5	9
123	Microstructure and thermal expansion properties of invar-type Cu-Zn-Al shape memory alloys. Journal of Electronic Materials, 2004, 33, 1098-1102.	2.2	8
124	Pâ€33: Cuâ€Mn Electrodes for aâ€5i TFT and Its Electrical Characteristics. Digest of Technical Papers SID International Symposium, 2010, 41, 1343-1346.	0.3	8
125	Fast crystal nucleation induced by surface oxidation in Si-doped GeTe amorphous thin film. Applied Physics Letters, 2012, 100,	3.3	8
126	Molybdenum oxide-base phase change resistive switching material. Applied Physics Letters, 2017, 111, .	3.3	8

#	Article	IF	CITATIONS
127	Material innovation for MOL, BEOL, and 3D integration. , 2017, , .		8
128	Mixed-conduction mechanism of Cr2Ge2Te6 film enabling positive temperature dependence of electrical conductivity and seebeck coefficient. Results in Materials, 2020, 8, 100155.	1.8	8
129	Martensitic transformation of Cu–10at.%Al–9at.%Ga–11at.%Mn ferromagnetic β alloy. Scripta Materialia, 2005, 52, 1153-1156.	5.2	7
130	Multiresistance Characteristics of PCRAM With \$ hbox{Ge}_{1}hbox{Cu}_{2}hbox{Te}_{3}\$ and \$hbox{Ge}_{2} hbox{Sb}_{2}hbox{Te}_{5}\$ Films. IEEE Electron Device Letters, 2012, 33, 1399-1401.	3.9	7
131	Chronological change of electrical resistance in GeCu ₂ Te ₃ amorphous film induced by surface oxidation. Journal Physics D: Applied Physics, 2014, 47, 475302.	2.8	7
132	Investigation of an erasing method for synaptic behaviour in a phase change device using Ge 1 Cu 2 Te 3 (GCT). Electronics Letters, 2016, 52, 1514-1516.	1.0	7
133	Systematic materials design for phase-change memory with small density changes for high-endurance non-volatile memory applications. Applied Physics Express, 2019, 12, 051008.	2.4	7
134	Sequential two-stage displacive transformation from β to α via β′ phase in polymorphic MnTe film. Materials and Design, 2020, 196, 109141.	7.0	7
135	Improved Ordering of Quasi-Two-Dimensional MoS ₂ via an Amorphous-to-Crystal Transition Initiated from Amorphous Sulfur-Rich MoS _{2+<i>x</i>} . Crystal Growth and Design, 2022, 22, 3072-3079.	3.0	7
136	é«~åŠå·¥æ€§Cu-Al-Mn基形状è`~憶å•́金ã®é−‹ç™º. Materia Japan, 2003, 42, 813-821.	0.1	6
137	Effect of microstructure on two-way shape memory effect in Cu-A1-Mn alloys. European Physical Journal Special Topics, 2003, 112, 507-510.	0.2	6
138	High Contact Resistivity Enabling Lowâ€Energy Operation in Cr ₂ Ge ₂ Te ₆ â€Based Phaseâ€Change Random Access Memory. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000392.	2.4	6
139	Martensitic transformation behavior under magnetic field in Co-Ni-Al ferromagnetic shape memory alloys. , 2003, , .		5
140	The Electrical and Optical Properties of Fe–O–N Thin Films Deposited by RF Magnetron Sputtering. Materials Transactions, 2013, 54, 2055-2058.	1.2	5
141	Effects of O ₂ and N ₂ Flow Rate on the Electrical Properties of Fe-O-N Thin Films. Materials Transactions, 2014, 55, 1606-1610.	1.2	5
142	Crystallization processes of Sb100â^'xZnx (0 â‰ኳ â‰ጃ0) amorphous films for use as phase change memory materials. AIP Advances, 2015, 5, 097151.	1.3	5
143	Novel device structure for phase change memory toward low-current operation. Japanese Journal of Applied Physics, 2015, 54, 094302.	1.5	5
144	Thermal stability and polymorphic transformation kinetics in β-MnTe films deposited via radiofrequency magnetron sputtering. Japanese Journal of Applied Physics, 2021, 60, 045504.	1.5	5

#	Article	IF	CITATIONS
145	Electrical Conduction Mechanism of βâ€MnTe Thin Film with Wurtziteâ€Type Structure Using Radiofrequency Magnetron Sputtering. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	5
146	Electrical Resistance and Structural Changes on Crystallizaiton Process of Amorphous Ge-Te Thin Films. Materials Research Society Symposia Proceedings, 2009, 1160, 1.	0.1	4
147	Crystallization behavior and resistance change in eutectic Si15Te85 amorphous films. Thin Solid Films, 2012, 520, 2128-2131.	1.8	4
148	Hardness and Wear Properties of Ti-Mo-C-N Film. Materials Transactions, 2016, 57, 362-367.	1.2	4
149	XAFS Analysis of Crystal GeCu ₂ Te ₃ Phase Change Material. Zeitschrift Fur Physikalische Chemie, 2016, 230, 433-443.	2.8	4
150	Temperatureâ€Dependent Electronic Transport in Nonâ€Bulkâ€Resistanceâ€Variation Nitrogenâ€Doped Cr ₂ Ge ₂ Te ₆ Phaseâ€Change Material. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000415.	2.4	4
151	Understanding the low resistivity of the amorphous phase of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:mr phase-change material: Experimental evidence for the key role of Cr clusters. Physical Review Materials, 2021, 5, .</mml:mr </mml:msub></mml:mrow></mml:math 	1>22.4	:mn>
152	Evolution of the local structure surrounding nitrogen atoms upon the amorphous to crystalline phase transition in nitrogen-doped Cr2Ge2Te6 phase-change material. Applied Surface Science, 2021, 556, 149760.	6.1	4
153	Effects of Aging and Co Addition on Martensitic and Magnetic Transitions in Ni–Al–Fe β-based Shape Memory Alloys. ISIJ International, 2006, 46, 1287-1291.	1.4	4
154	Influence of Thomson effect on amorphization in phase-change memory: dimensional analysis based on Buckingham's ĐŸ theorem for Ge ₂ Sb ₂ Te ₅ . Materials Research Express, 2021, 8, 115902.	1.6	4
155	Effect of Co Addition on the Ordering and Martensitic Transformations in Cu-Al-Mn Shape Memory Alloys. Materials Science Forum, 2000, 327-328, 473-476.	0.3	3
156	Effect of Heat Aging on Thermal and Mechanical Properties of Ti-Ni-Nb Shape Memory Alloy. Materials Transactions, 2007, 48, 439-444.	1.2	3
157	Crystallization behavior of Ge1Cu2Te3 amorphous film. Materials Research Society Symposia Proceedings, 2010, 1251, 8.	0.1	3
158	Application of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams. , 2012, , .		3
159	Reflow behavior of Cu–Mn in LSI line patterns. Japanese Journal of Applied Physics, 2014, 53, 05GA09.	1.5	3
160	Formation behavior and adhesion property of metallic Mn layer on porous SiOC by chemical vapor deposition. Japanese Journal of Applied Physics, 2014, 53, 05GA10.	1.5	3
161	Microstructure, hardness and wear resistance of reactive sputtered Mo–O–N films on stainless steel substrate. Surface and Coatings Technology, 2015, 280, 1-7.	4.8	3
162	Feasibility of Cu-Al-Mn superelastic alloy bar as a self-sensor material. Journal of Intelligent Material Systems and Structures, 2015, 26, 364-370.	2.5	3

#	Article	IF	CITATIONS
163	Impact of contact resistance on memory window in phase-change random access memory (PCRAM). Journal of Computational Electronics, 2016, 15, 1570-1576.	2.5	3
164	Effect of Initial Microstructure on Stress-Strain Behavior in Mg-Sc-Zn Based Alloy with High Sc Content. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 276-281.	0.4	3
165	Observation of ultrafast amorphization dynamics in GeCu2Te3 thin films using echelon-based single-shot transient absorbance spectroscopy. Applied Physics Letters, 2021, 119, .	3.3	3
166	Metal Alloy Fibers. , 2007, , 331-333.		3
167	Effective magnetic properties of Fe-NiTi (FSMA) particulate composite. , 2005, , .		2
168	Effect of Heat Treatment on the Hardness of Ti-Mo-N Films Deposited by RF Reactive Magnetron Sputtering. Materials Transactions, 2010, 51, 1467-1473.	1.2	2
169	Investigation of a selective switching device using a phase-change material for a 3-dimensional PCRAM array. Journal of the Korean Physical Society, 2013, 62, 1258-1263.	0.7	2
170	Effect of CVD Mn oxide layer as Cu diffusion barrier for TSV. , 2013, , .		2
171	Resistive Switching Behavior in Undoped α-Fe ₂ O ₃ Film with a Low Resistivity. Advances in Science and Technology, 0, , .	0.2	2
172	Effect of surface cleaning on contact resistivity of amorphous GeCu2Te3 to a W electrode. MRS Advances, 2016, 1, 2731-2736.	0.9	2
173	Crystal Orientation Changing Behavior During Erichsen Test in Mg-Y Dilute Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 515-520.	0.4	2
174	Investigation of bias polarity dependence of set operation in GeCu ₂ Te ₃ phase change memory. Electronics Letters, 2018, 54, 350-351.	1.0	2
175	New Contact Metallization Scheme for FinFET and Beyond. , 2018, , .		2
176	Bi-Base Composite Solders for Mounting Power Semiconductor Devices. Journal of Japan Institute of Electronics Packaging, 2008, 11, 141-146.	0.1	2
177	Bidirectional Electric-Induced Conductance Based on GeTe/Sb2Te3 Interfacial Phase Change Memory for Neuro-Inspired Computing. Electronics (Switzerland), 2021, 10, 2692.	3.1	2
178	Layerâ€dependent effects of interfacial phase change memory for an artificial synapse. Physica Status Solidi - Rapid Research Letters, 0, , .	2.4	2
179	Shortâ€Range Order Investigation of CuxGe50â^'xTe50 Phaseâ€Change Materials. Physica Status Solidi (B): Basic Research, 0, , 2100619.	1.5	2
180	Thermal stress control of the polymorphic transformation in MnTe semiconductor films. Materialia, 2022, 24, 101493.	2.7	2

#	Article	IF	CITATIONS
181	P-23: The Contact Properties and TFT Structures of a-IGZO TFTs Combined with Cu-Mn Alloy Electrodes. Digest of Technical Papers SID International Symposium, 2011, 42, 1177-1180.	0.3	1
182	Recrystallization process and texture change of Mg–Y alloy rolled sheet. Keikinzoku/Journal of Japan Institute of Light Metals, 2015, 65, 259-262.	0.4	1
183	Structure and thermoelectric properties of PbTe films deposited by thermal evaporation method. , 2016, , .		1
184	Feasibility study of Cu paste printing technique to fill deep via holes for low cost 3D TSV applications. , 2017, , .		1
185	Effect of Cu Content on Hardness and Wear Properties in ï¼^Cr, Mo, Cu)N Film. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 270-275.	0.4	1
186	Implementation of pulse timing discriminator functionality into a GeSbTe/GeCuTe double layer structure. Optics Express, 2017, 25, 26825.	3.4	1
187	Texture Formation through Thermomechanical Treatment and Its Effect on Superelasticity in Mg-Sc Shape Memory Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 253-259.	0.4	1
188	Effect of N dopants on the phase change characteristics of Cr2Ge2Te6 film revealed by changes in optical properties. Applied Surface Science, 2022, 601, 154189.	6.1	1
189	Effect of Heat Treatment on the Hardness of Ti-Mo-N Coating Films Deposited by RF Reactive Magnetron Sputtering. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 135-141.	0.4	0
190	Electrical Resistance Change with Crystallization in Si-Te Amorphous Thin Films. Materials Research Society Symposia Proceedings, 2010, 1251, 7.	0.1	0
191	Selective Formation of a SnO2Cap Layer, Its Growth Behavior, and Oxidation Resistance. Japanese Journal of Applied Physics, 2010, 49, 05FA02.	1.5	0
192	The Thickness-Ratio Effects of Ni/Nb Electrode on Wire Bonding Strength with N-Type 4H-SiC. Materials Science Forum, 2012, 717-720, 829-832.	0.3	0
193	Multiple phase change structure for the scalable phase change random access memory array. Japanese Journal of Applied Physics, 2014, 53, 041801.	1.5	0
194	A Study on Phase Transition Characteristics of Ge-Cu-Te Film for Phase Change Random Access Memory. Materia Japan, 2014, 53, 45-51.	0.1	0
195	Hardness and Wear Properties of Ti-Mo-C-N Film. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 220-226.	0.4	0
196	Study on Fatigue Mechanism of Mg-0.6at%Y Alloy by Cyclic Tensile Test. , 2016, , 299-303.		0
197	Baking temperature dependence of Cu paste on A1-BSF cell properties. , 2017, , .		0
198	Improvement of Powdering Resistance of Zn-Fe Galvannealed Coating by Controlling of Its Composition and Microstructure: Verification with Sputtering Method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 724-732.	0.4	0

#	Article	IF	CITATIONS
199	Superelastic Biomedical Guidewire, Functionally Graded. , 2005, , 1-7.		0
200	2115 Development of superelastic medical guidewires with functionally graded properties. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 167-168.	0.0	0
201	2117 Superelasticity of Co-Ni-Al ferromagnetic shape memory alloys. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 171-172.	0.0	0
202	Electrical Contact Property of GeCu2Te3 Phase Change Material to Electrode. ECS Meeting Abstracts, 2016, , .	0.0	0
203	(Invited) Ge-Cu-Te Phase Change Material for Pcram Application. ECS Meeting Abstracts, 2016, , .	0.0	0
204	Age-Hardening of Dual Phase Mg-Sc Alloy at 573 K. , 2016, , 147-149.		0
205	Possibility of Cu ₂ Mg for Liner-Barrier Free Interconnects. , 2020, , .		0