Bruno Miroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3863909/publications.pdf

Version: 2024-02-01

RRUNO MIROUX

#	Article	IF	CITATIONS
1	Structural models of mitochondrial uncoupling proteins obtained in DPC micelles are not functionally relevant. FEBS Journal, 2021, 288, 3024-3033.	2.2	4
2	Inducible intracellular membranes: molecular aspects and emerging applications. Microbial Cell Factories, 2020, 19, 176.	1.9	9
3	Shaping the lipid composition of bacterial membranes for membrane protein production. Microbial Cell Factories, 2019, 18, 131.	1.9	17
4	Bacteriaâ€Based Production of Thiolâ€Clickable, Genetically Encoded Lipid Nanovesicles. Angewandte Chemie - International Edition, 2019, 58, 7395-7399.	7.2	5
5	Bacteriaâ€Based Production of Thiolâ€Clickable, Genetically Encoded Lipid Nanovesicles. Angewandte Chemie, 2019, 131, 7473-7477.	1.6	Ο
6	Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chemical Reviews, 2018, 118, 3559-3607.	23.0	132
7	Microbial expression systems for membrane proteins. Methods, 2018, 147, 3-39.	1.9	57
8	Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7967-7972.	3.3	65
9	A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins. Scientific Reports, 2018, 8, 8572.	1.6	34
10	Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1124-1132.	1.4	26
11	Membrane Protein Production in Escherichia coli: Protocols and Rules. Methods in Molecular Biology, 2016, 1432, 37-52.	0.4	7
12	Escherichia coli as host for membrane protein structure determination: a global analysis. Scientific Reports, 2015, 5, 12097.	1.6	32
13	Editorial overview: Membranes. Current Opinion in Structural Biology, 2015, 33, vii-ix.	2.6	0
14	Dangerous Liaisons between Detergents and Membrane Proteins. The Case of Mitochondrial Uncoupling Protein 2. Journal of the American Chemical Society, 2013, 135, 15174-15182.	6.6	86
15	Assaying the proton transport and regulation of UCP1 using solid supported membranes. European Biophysics Journal, 2012, 41, 675-679.	1.2	5
16	Analysis of Uncoupling Protein 2-Deficient Mice upon Anaesthesia and Sedation Revealed a Role for UCP2 in Locomotion. PLoS ONE, 2012, 7, e41846.	1.1	5
17	Expression of Membrane Proteins at the Escherichia coli Membrane for Structural Studies. Methods in Molecular Biology, 2010, 601, 49-66.	0.4	29
18	Uncoupling Protein 2 Has Protective Function during Experimental Autoimmune Encephalomyelitis. American Journal of Pathology, 2006, 168, 1570-1575.	1.9	72

Bruno Miroux

#	Article	IF	CITATIONS
19	Assessment of a high-throughput screening methodology for the measurement of purified UCP1 uncoupling activity. Analytical Biochemistry, 2006, 351, 201-206.	1.1	9
20	Over-expression ofEscherichia coliF1Fo-ATPase subunit a is inhibited by instability of theuncBgene transcript. FEBS Letters, 2003, 547, 97-100.	1.3	32
21	Bone Marrow Transplantation Reveals the in Vivo Expression of the Mitochondrial Uncoupling Protein 2 in Immune and Nonimmune Cells during Inflammation. Journal of Biological Chemistry, 2003, 278, 42307-42312.	1.6	56
22	A General Approach for Heterologous Membrane Protein Expression in Escherichia coli: The Uncoupling Protein, UCP1, as an Example. , 2003, 228, 23-36.		16
23	Uncoupling Protein 2, in Vivo Distribution, Induction upon Oxidative Stress, and Evidence for Translational Regulation. Journal of Biological Chemistry, 2001, 276, 8705-8712.	1.6	415
24	Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genetics, 2000, 26, 435-439.	9.4	992
25	Characterisation of new intracellular membranes inEscherichia coliaccompanying large scale over-production of the b subunit of F1FoATP synthase. FEBS Letters, 2000, 482, 215-219.	1.3	139
26	Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. Journal of Molecular Biology, 1996, 260, 289-298.	2.0	1,745
27	The <i>l´</i> - and <i>lµ</i> -subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. Biochemical Journal, 1996, 314, 695-700.	1.7	30