Bruno Miroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3863909/publications.pdf

Version: 2024-02-01

516561 610775 4,023 27 16 24 h-index citations g-index papers 30 30 30 5225 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High Levels. Journal of Molecular Biology, 1996, 260, 289-298.	2.0	1,745
2	Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genetics, 2000, 26, 435-439.	9.4	992
3	Uncoupling Protein 2, in Vivo Distribution, Induction upon Oxidative Stress, and Evidence for Translational Regulation. Journal of Biological Chemistry, 2001, 276, 8705-8712.	1.6	415
4	Characterisation of new intracellular membranes in Escherichia coliac companying large scale over-production of the b subunit of F1FoATP synthase. FEBS Letters, 2000, 482, 215-219.	1.3	139
5	Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chemical Reviews, 2018, 118, 3559-3607.	23.0	132
6	Dangerous Liaisons between Detergents and Membrane Proteins. The Case of Mitochondrial Uncoupling Protein 2. Journal of the American Chemical Society, 2013, 135, 15174-15182.	6.6	86
7	Uncoupling Protein 2 Has Protective Function during Experimental Autoimmune Encephalomyelitis. American Journal of Pathology, 2006, 168, 1570-1575.	1.9	72
8	Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7967-7972.	3.3	65
9	Microbial expression systems for membrane proteins. Methods, 2018, 147, 3-39.	1.9	57
10	Bone Marrow Transplantation Reveals the in Vivo Expression of the Mitochondrial Uncoupling Protein 2 in Immune and Nonimmune Cells during Inflammation. Journal of Biological Chemistry, 2003, 278, 42307-42312.	1.6	56
11	A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins. Scientific Reports, 2018, 8, 8572.	1.6	34
12	Over-expression of Escherichia coliF1Fo-ATPase subunit a is inhibited by instability of theuncBgene transcript. FEBS Letters, 2003, 547, 97-100.	1.3	32
13	Escherichia coli as host for membrane protein structure determination: a global analysis. Scientific Reports, 2015, 5, 12097.	1.6	32
14	The <i>δ</i> - and <i>ε</i> -subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. Biochemical Journal, 1996, 314, 695-700.	1.7	30
15	Expression of Membrane Proteins at the Escherichia coli Membrane for Structural Studies. Methods in Molecular Biology, 2010, 601, 49-66.	0.4	29
16	Cardiolipin plays an essential role in the formation of intracellular membranes in Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1124-1132.	1.4	26
17	Shaping the lipid composition of bacterial membranes for membrane protein production. Microbial Cell Factories, 2019, 18, 131.	1.9	17
18	A General Approach for Heterologous Membrane Protein Expression in Escherichia coli: The Uncoupling Protein, UCP1, as an Example., 2003, 228, 23-36.		16

#	Article	IF	CITATIONS
19	Assessment of a high-throughput screening methodology for the measurement of purified UCP1 uncoupling activity. Analytical Biochemistry, 2006, 351, 201-206.	1.1	9
20	Inducible intracellular membranes: molecular aspects and emerging applications. Microbial Cell Factories, 2020, 19, 176.	1.9	9
21	Membrane Protein Production in Escherichia coli: Protocols and Rules. Methods in Molecular Biology, 2016, 1432, 37-52.	0.4	7
22	Assaying the proton transport and regulation of UCP1 using solid supported membranes. European Biophysics Journal, 2012, 41, 675-679.	1.2	5
23	Analysis of Uncoupling Protein 2-Deficient Mice upon Anaesthesia and Sedation Revealed a Role for UCP2 in Locomotion. PLoS ONE, 2012, 7, e41846.	1.1	5
24	Bacteriaâ€Based Production of Thiolâ€Clickable, Genetically Encoded Lipid Nanovesicles. Angewandte Chemie - International Edition, 2019, 58, 7395-7399.	7.2	5
25	Structural models of mitochondrial uncoupling proteins obtained in DPC micelles are not functionally relevant. FEBS Journal, 2021, 288, 3024-3033.	2.2	4
26	Editorial overview: Membranes. Current Opinion in Structural Biology, 2015, 33, vii-ix.	2.6	0
27	Bacteriaâ€Based Production of Thiol lickable, Genetically Encoded Lipid Nanovesicles. Angewandte Chemie, 2019, 131, 7473-7477.	1.6	o