Gareth R William

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3863816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theranostics for MRIâ€guided therapy: Recent developments. View, 2022, 3, 20200134.	5.3	17
2	2D antimonene-integrated composite nanomedicine for augmented low-temperature photonic tumor hyperthermia by reversing cell thermoresistance. Bioactive Materials, 2022, 10, 295-305.	15.6	16
3	Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Analytical Chemistry, 2022, 94, 2465-2475.	6.5	14
4	An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Advances, 2022, 12, 4005-4015.	3.6	9
5	Monitoring Polymorphic Phase Transitions in Flufenamic Acid Amorphous Solid Dispersions Using Hyphenated X-ray Diffraction–Differential Scanning Calorimetry. Molecular Pharmaceutics, 2022, 19, 1477-1487.	4.6	4
6	Biocompatible hydroxy double salts as delivery matrices for non-steroidal anti-inflammatory and anti-epileptic drugs. Applied Clay Science, 2022, 221, 106456.	5.2	5
7	Mesoporous Doxorubicin-Loaded Polydopamine Nanoparticles Coated with a Platelet Membrane Suppress Tumor Growth in a Murine Model of Human Breast Cancer. ACS Applied Bio Materials, 2022, 5, 123-133.	4.6	13
8	Cu2+-Chelating Mesoporous Silica Nanoparticles for Synergistic Chemotherapy/Chemodynamic Therapy. Pharmaceutics, 2022, 14, 1200.	4.5	2
9	Ternary NiCoTi-layered double hydroxide nanosheets as a pH-responsive nanoagent for photodynamic/chemodynamic synergistic therapy. Fundamental Research, 2022, , .	3.3	3
10	Co-Loading of Inorganic Nanoparticles and Natural Oil in the Electrospun Janus Nanofibers for a Synergetic Antibacterial Effect. Pharmaceutics, 2022, 14, 1208.	4.5	38
11	Layered double hydroxide-based nanomaterials for biomedical applications. Chemical Society Reviews, 2022, 51, 6126-6176.	38.1	133
12	Computational and Experimental Evaluation of the Stability of a GLP-1-like Peptide in Ethanol–Water Mixtures. Pharmaceutics, 2022, 14, 1462.	4.5	0
13	Carrier-free nanodrugs for safe and effective cancer treatment. Journal of Controlled Release, 2021, 329, 805-832.	9.9	90
14	Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite. Materials Chemistry and Physics, 2021, 257, 123712.	4.0	20
15	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	5.8	81
16	Extracellular vesicles can be processed by electrospinning without loss of structure or function. Materials Letters, 2021, 282, 128671.	2.6	7
17	Protein encapsulation by electrospinning and electrospraying. Journal of Controlled Release, 2021, 329, 1172-1197.	9.9	61
18	Developing and scaling up fast-dissolving electrospun formulations based on poly(vinylpyrrolidone) and ketoprofen. Journal of Drug Delivery Science and Technology, 2021, 61, 102138.	3.0	9

#	Article	IF	CITATIONS
19	A simple route to functionalising electrospun polymer scaffolds with surface biomolecules. International Journal of Pharmaceutics, 2021, 597, 120231.	5.2	7
20	Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. International Journal of Pharmaceutics, 2021, 596, 120203.	5.2	52
21	Biopolymer-Based Nanohydroxyapatite Composites for the Removal of Fluoride, Lead, Cadmium, and Arsenic from Water. ACS Omega, 2021, 6, 8517-8530.	3.5	39
22	Particle Engineering of Gypsum Through Templating with Starch. Industrial & Engineering Chemistry Research, 2021, 60, 5852-5860.	3.7	2
23	Electrospun fixed dose combination fibers for the treatment of cardiovascular disease. International Journal of Pharmaceutics, 2021, 599, 120426.	5.2	9
24	Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of BreastÂCancer. Acta Biomaterialia, 2021, 126, 408-420.	8.3	57
25	Multifunctional fabrics finished using electrosprayed hybrid Janus particles containing nanocatalysts. Chemical Engineering Journal, 2021, 411, 128474.	12.7	49
26	Structure–Activity Relationship of Lanthanide-Incorporated Nano-Hydroxyapatite for the Adsorption of Fluoride and Lead. ACS Omega, 2021, 6, 13527-13543.	3.5	10
27	Coaxial electrospun biomimetic copolymer fibres for application in diffusion magnetic resonance imaging. Bioinspiration and Biomimetics, 2021, 16, 046016.	2.9	4
28	Layered Double Hydroxide Modified Bone Cement Promoting Osseointegration <i>via</i> Multiple Osteogenic Signal Pathways. ACS Nano, 2021, 15, 9732-9745.	14.6	47
29	Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics, 2021, 13, 983.	4.5	27
30	Ultrathin chalcogenide nanosheets for photoacoustic imaging-guided synergistic photothermal/gas therapy. Biomaterials, 2021, 273, 120807.	11.4	42
31	Encapsulation of Pharmaceutical and Nutraceutical Active Ingredients Using Electrospinning Processes. Nanomaterials, 2021, 11, 1968.	4.1	52
32	Functionalizable coaxial PLLA/PDLA nanofibers with stereocomplexes at the internal interface. Journal of Materials Research, 2021, 36, 2995-3009.	2.6	3
33	An investigation of alkaline phosphatase enzymatic activity after electrospinning and electrospraying. Journal of Drug Delivery Science and Technology, 2021, 64, 102592.	3.0	5
34	Layered terbium hydroxides for simultaneous drug delivery and imaging. Dalton Transactions, 2021, 50, 10275-10290.	3.3	7
35	Nanomagnetite- and Nanotitania-Incorporated Polyacrylonitrile Nanofibers for Simultaneous Cd(II)- and As(V)-Ion Removal Applications. ACS Omega, 2021, 6, 28171-28181.	3.5	2
36	The effect of additives on the hydration of CaSO4·0.5H2O: A synchrotron X-ray diffraction study. Journal of Solid State Chemistry, 2021, 305, 122671.	2.9	1

#	Article	IF	CITATIONS
37	The effect of formulation morphology on stimuli-triggered co-delivery of chemotherapeutic and MRI contrast agents. International Journal of Pharmaceutics, 2021, 609, 121155.	5.2	4
38	The potential antiâ€infective applications of metal oxide nanoparticles: A systematic review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1592.	6.1	70
39	Inhibiting the fibrillation of a GLP-1-like peptide. International Journal of Pharmaceutics, 2020, 574, 118923.	5.2	6
40	Biomineralized Bimetallic Oxide Nanotheranostics for Multimodal Imaging-Guided Combination Therapy. Theranostics, 2020, 10, 841-855.	10.0	50
41	Multicomponent Transition Metal Dichalcogenide Nanosheets for Imagingâ€Guided Photothermal and Chemodynamic Therapy. Advanced Science, 2020, 7, 2000272.	11.2	86
42	Energy-Saving Electrospinning with a Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers. Polymers, 2020, 12, 2421.	4.5	130
43	A Simultaneous Differential Scanning Calorimetry–X-ray Diffraction Study of Olanzapine Crystallization from Amorphous Solid Dispersions. Molecular Pharmaceutics, 2020, 17, 4364-4374.	4.6	6
44	An investigation of rhinovirus infection on cellular uptake of poly (glycerol-adipate) nanoparticles. International Journal of Pharmaceutics, 2020, 589, 119826.	5.2	17
45	Mechanistic In Situ and Ex Situ Studies of Phase Transformations in Molecular Coâ€Crystals. Chemistry - A European Journal, 2020, 26, 14645-14653.	3.3	4
46	Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics, 2020, 12, 999.	4.5	32
47	Human mouthfeel panel investigating the acceptability of electrospun and solvent cast orodispersible films. International Journal of Pharmaceutics, 2020, 585, 119532.	5.2	8
48	pH-Responsive nanocomposite fibres allowing MRI monitoring of drug release. Journal of Materials Chemistry B, 2020, 8, 7264-7274.	5.8	25
49	Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy. Nanoscale, 2020, 12, 14739-14750.	5.6	49
50	A Novel Transdermal Protein Delivery Strategy via Electrohydrodynamic Coating of PLGA Microparticles onto Microneedles. ACS Applied Materials & Interfaces, 2020, 12, 12478-12488.	8.0	42
51	Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Materials Science and Engineering C, 2020, 111, 110805.	7.3	202
52	Stealth Polydopamine-Based Nanoparticles with Red Blood Cell Membrane for the Chemo-Photothermal Therapy of Cancer. ACS Applied Bio Materials, 2020, 3, 2350-2359.	4.6	26
53	The Effect of Solvent Vapor Annealing on Drug-Loaded Electrospun Polymer Fibers. Pharmaceutics, 2020, 12, 139.	4.5	12
54	Acoustic Immunosensing of Exosomes Using a Quartz Crystal Microbalance with Dissipation Monitoring. Analytical Chemistry, 2020, 92, 4082-4093.	6.5	55

#	Article	IF	CITATIONS
55	Fabrication of Electrospun Levodopa-Carbidopa Fixed-Dose Combinations. Advanced Fiber Materials, 2020, 2, 194-203.	16.1	19
56	SiO2-coated layered gadolinium hydroxides for simultaneous drug delivery and magnetic resonance imaging. Journal of Solid State Chemistry, 2020, 286, 121291.	2.9	14
57	Controlled local release of PPARÎ ³ agonists from biomaterials to treat peripheral nerve injury. Journal of Neural Engineering, 2020, 17, 046030.	3.5	11
58	Enhancing Photocatalytic Activity of Nb ₂ O _{5â^'<i>x</i>} for Aerobic Oxidation Through Synergy of Oxygen Vacancy and Porosity. Journal of Nanoscience and Nanotechnology, 2020, 20, 2495-2502.	0.9	4
59	The Development and Bio-applications of Multifluid Electrospinning. Materials Highlights, 2020, 1, 1.	1.8	42
60	An Exploration of Electrospun Fibers Containing Drug-Cyclodextrin Inclusion Complexes. Pharmaceutical Sciences and Research, 2020, 7, .	0.1	0
61	Perfluorophenyl azide functionalization of electrospun poly(para â€dioxanone). Polymers for Advanced Technologies, 2019, 30, 1165-1172.	3.2	1
62	Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110411.	5.0	17
63	The effect of collection substrate on electrospun ciprofloxacin-loaded poly(vinylpyrrolidone) and ethyl cellulose nanofibers as potential wound dressing materials. Materials Science and Engineering C, 2019, 104, 109917.	7.3	49
64	Solid lipid nanoparticles self-assembled from spray dried microparticles. International Journal of Pharmaceutics, 2019, 572, 118784.	5.2	8
65	Gaseous "nanoprobes―for detecting gas-trapping environments in macroscopic films of vapor-deposited amorphous ice. Journal of Chemical Physics, 2019, 151, 134505.	3.0	8
66	Synergistic Chemo-Photothermal Suppression of Cancer by Melanin Decorated MoO _{<i>x</i>} Nanosheets. ACS Applied Bio Materials, 2019, 2, 4356-4366.	4.6	16
67	Erythrocyte Membrane Cloaked Curcumin-Loaded Nanoparticles for Enhanced Chemotherapy. Pharmaceutics, 2019, 11, 429.	4.5	34
68	Pluronic F127-based micelles for tumor-targeted bufalin delivery. International Journal of Pharmaceutics, 2019, 559, 289-298.	5.2	51
69	Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy. Carbohydrate Polymers, 2019, 221, 84-93.	10.2	45
70	A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Advanced Science, 2019, 6, 1802001.	11.2	72
71	Olanzapine Form IV: Discovery of a New Polymorphic Form Enabled by Computed Crystal Energy Landscapes. Crystal Growth and Design, 2019, 19, 2751-2757.	3.0	31
72	Tunable drug release from blend poly(vinyl pyrrolidone)-ethyl cellulose nanofibers. International Journal of Pharmaceutics, 2019, 562, 172-179.	5.2	54

#	Article	IF	CITATIONS
73	A novel chitosan-based nanomedicine for multi-drug resistant breast cancer therapy. Chemical Engineering Journal, 2019, 369, 134-149.	12.7	61
74	Solar- versus Thermal-Driven Catalysis for Energy Conversion. Joule, 2019, 3, 920-937.	24.0	153
75	Improved nanocomposite of montmorillonite and hydroxyapatite for defluoridation of water. RSC Advances, 2019, 9, 35588-35598.	3.6	25
76	Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chemical Engineering Journal, 2019, 356, 886-894.	12.7	117
77	Immediate release of helicid from nanoparticles produced by modified coaxial electrospraying. Applied Surface Science, 2019, 473, 148-155.	6.1	45
78	Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564, 122-130.	4.7	44
79	Dual-responsive molybdenum disulfide/copper sulfide-based delivery systems for enhanced chemo-photothermal therapy. Journal of Colloid and Interface Science, 2019, 539, 433-441.	9.4	35
80	Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2019, 173, 101-108.	5.0	82
81	Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydrate Polymers, 2019, 203, 228-237.	10.2	126
82	A simultaneous X-ray diffraction–differential scanning calorimetry study into the phase transitions of mefenamic acid. Journal of Applied Crystallography, 2019, 52, 1264-1270.	4.5	5
83	A kinetic and mechanistic study into the transformation of calcium sulfate hemihydrate to dihydrate. Journal of Synchrotron Radiation, 2019, 26, 774-784.	2.4	12
84	Effective delivery of hydrophobic drugs to breast and liver cancer cells using a hybrid inorganic nanocarrier: A detailed investigation using cytotoxicity assays, fluorescence imaging and flow cytometry. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 18-26.	4.3	33
85	Layered gadolinium hydroxides for simultaneous drug delivery and imaging. Dalton Transactions, 2018, 47, 3166-3177.	3.3	22
86	Core-shell poly(lactide-co-ε-caprolactone)-gelatin fiber scaffolds as pH-sensitive drug delivery systems. Journal of Biomaterials Applications, 2018, 32, 1105-1118.	2.4	27
87	Dual-responsive drug delivery systems prepared by blend electrospinning. International Journal of Pharmaceutics, 2018, 543, 1-7.	5.2	34
88	pH-responsive liposomes self-assembled from electrosprayed microparticles, and their drug release properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 20-27.	4.7	23
89	The influence of electrospinning parameters on polydioxanone scaffold properties. Biomedical Physics and Engineering Express, 2018, 4, 025023.	1.2	4
90	Reverse microemulsion synthesis of layered gadolinium hydroxide nanoparticles. Journal of Solid State Chemistry, 2018, 258, 320-327.	2.9	6

#	Article	IF	CITATIONS
91	The Effect of Molecular Properties on Active Ingredient Release from Electrospun Eudragit Fibers. Pharmaceutics, 2018, 10, 103.	4.5	14
92	Dual temperature and pH responsive nanofiber formulations prepared by electrospinning. Colloids and Surfaces B: Biointerfaces, 2018, 171, 142-149.	5.0	44
93	Polymorphic Phase Transitions in Carbamazepine and 10,11â€Dihydrocarbamazepine. Chemistry - A European Journal, 2018, 24, 13573-13581.	3.3	12
94	Electrospun fixed dose formulations of amlodipine besylate and valsartan. International Journal of Pharmaceutics, 2018, 549, 446-455.	5.2	41
95	Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. Journal of Controlled Release, 2018, 292, 91-110.	9.9	216
96	Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 2018, 180, 304-313.	10.2	79
97	Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydrate Polymers, 2017, 164, 154-161.	10.2	104
98	Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomaterialia, 2017, 53, 233-241.	8.3	110
99	Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-É›-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Materials Science and Engineering C, 2017, 79, 245-254.	7.3	53
100	Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior. European Journal of Pharmaceutical Sciences, 2017, 106, 422-430.	4.0	104
101	Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release. International Journal of Pharmaceutics, 2017, 523, 376-385.	5.2	29
102	High-quality Janus nanofibers prepared using three-fluid electrospinning. Chemical Communications, 2017, 53, 4542-4545.	4.1	177
103	Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. International Journal of Pharmaceutics, 2017, 517, 135-147.	5.2	96
104	Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomaterialia, 2017, 64, 126-136.	8.3	59
105	A thermosensitive drug delivery system prepared by blend electrospinning. Colloids and Surfaces B: Biointerfaces, 2017, 159, 277-283.	5.0	37
106	Electrospun gelatin/sodium bicarbonate and poly(lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems. Materials Science and Engineering C, 2017, 81, 359-365.	7.3	33
107	Electrospun organic–inorganic nanohybrids as sustained release drug delivery systems. Journal of Materials Chemistry B, 2017, 5, 9165-9174.	5.8	31
108	Electrospun boronic acid-containing polymer membranes as fluorescent sensors for bacteria detection. Reactive and Functional Polymers, 2017, 121, 23-31.	4.1	27

#	Article	IF	CITATIONS
109	Electrosprayed Janus Particles for Combined Photo-Chemotherapy. AAPS PharmSciTech, 2017, 18, 1460-1468.	3.3	27
110	RGD constructs with physical anchor groups as polymer co-electrospinnable cell adhesives. Polymers for Advanced Technologies, 2017, 28, 1312-1317.	3.2	3
111	Glucose- and temperature-sensitive nanoparticles for insulin delivery. International Journal of Nanomedicine, 2017, Volume 12, 4037-4057.	6.7	25
112	Insulin-loaded PLGA microspheres for glucose-responsive release. Drug Delivery, 2017, 24, 1513-1525.	5.7	49
113	Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. European Journal of Pharmaceutical Sciences, 2016, 92, 28-38.	4.0	23
114	Electrospun Contrastâ€Agentâ€Loaded Fibers for Colonâ€Targeted MRI. Advanced Healthcare Materials, 2016, 5, 977-985.	7.6	47
115	Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance. Journal of Solid State Chemistry, 2016, 238, 129-138.	2.9	10
116	Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Advances, 2016, 6, 50267-50277.	3.6	127
117	The potential for a protective vaccine for rhinovirus infections. Expert Review of Vaccines, 2016, 15, 569-571.	4.4	15
118	Stabilisation of metastable polymorphs: the case of paracetamol form III. Chemical Communications, 2016, 52, 12028-12031.	4.1	39
119	New biocompatible hydroxy double salts and their drug delivery properties. Journal of Materials Chemistry B, 2016, 4, 5789-5793.	5.8	10
120	Simultaneous Differential Scanning Calorimetry-Synchrotron X-ray Powder Diffraction: A Powerful Technique for Physical Form Characterization in Pharmaceutical Materials. Analytical Chemistry, 2016, 88, 10111-10117.	6.5	27
121	Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene. Scientific Reports, 2016, 6, 35502.	3.3	44
122	Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydrate Polymers, 2016, 151, 812-820.	10.2	114
123	Theranostic Fibers for Simultaneous Imaging and Drug Delivery. Molecular Pharmaceutics, 2016, 13, 2457-2465.	4.6	51
124	Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloids and Surfaces B: Biointerfaces, 2016, 138, 110-116.	5.0	106
125	Electrospun Poly(N-isopropylacrylamide)/Ethyl Cellulose Nanofibers as Thermoresponsive Drug Delivery Systems. Journal of Pharmaceutical Sciences, 2016, 105, 1104-1112.	3.3	87
126	Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents. Solid State Sciences, 2016, 53, 9-16.	3.2	9

#	Article	IF	CITATIONS
127	Electrospun pH-sensitive core–shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomaterialia, 2016, 35, 77-86.	8.3	161
128	Electrospun formulations of acyclovir, ciprofloxacin and cyanocobalamin for ocular drug delivery. International Journal of Pharmaceutics, 2016, 502, 208-218.	5.2	41
129	Thermal Behavior of Benzoic Acid/Isonicotinamide Binary Cocrystals. Crystal Growth and Design, 2015, 15, 3249-3256.	3.0	8
130	Electrospun medicated shellac nanofibers for colon-targeted drug delivery. International Journal of Pharmaceutics, 2015, 490, 384-390.	5.2	112
131	Particulate inorganic adjuvants: recent developments and future outlook. Journal of Pharmacy and Pharmacology, 2015, 67, 426-449.	2.4	31
132	Fast-dissolving sweet sedative nanofiber membranes. Journal of Materials Science, 2015, 50, 3604-3613.	3.7	37
133	Nanofibers Fabricated Using Triaxial Electrospinning as Zero Order Drug Delivery Systems. ACS Applied Materials & Interfaces, 2015, 7, 18891-18897.	8.0	236
134	Combined <i>In Situ</i> and <i>In Silico</i> Studies of Guest Intercalation into the Layered Double Hydroxide [LiAl ₂ (OH) ₆]X· <i>y</i> H ₂ O. Journal of Physical Chemistry C, 2015, 119, 18729-18740.	3.1	4
135	Polymer-Based Reconstruction of the Inferior Vena Cava in Rat: Stem Cells or RGD Peptide?. Tissue Engineering - Part A, 2015, 21, 1552-1564.	3.1	21
136	Preparation and characterisation of retrograded resistant starch. Proceedings of the Nutrition Society, 2015, 74, .	1.0	1
137	5-Fluorouracil loaded Eudragit fibers prepared by electrospinning. International Journal of Pharmaceutics, 2015, 495, 895-902.	5.2	62
138	Solid-state protein formulations. Therapeutic Delivery, 2015, 6, 59-82.	2.2	31
139	Incorporation of cisplatin into the metal–organic frameworks UiO66-NH ₂ and UiO66 – encapsulation vs. conjugation. RSC Advances, 2015, 5, 83648-83656.	3.6	62
140	Fast-Dissolving Core-Shell Composite Microparticles of Quercetin Fabricated Using a Coaxial Electrospray Process. PLoS ONE, 2014, 9, e92106.	2.5	43
141	Mebeverineâ€Loaded Electrospun Nanofibers: Physicochemical Characterization and Dissolution Studies. Journal of Pharmaceutical Sciences, 2014, 103, 283-292.	3.3	45
142	Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry. Journal of Experimental Medicine, 2014, 211, 1019-1025.	8.5	45
143	Highly stable coated polyvinylpyrrolidone nanofibers prepared using modified coaxial electrospinning. Fibers and Polymers, 2014, 15, 78-83.	2.1	24
144	Self-assembled magnetic liposomes from electrospun fibers. Materials Research Bulletin, 2014, 53, 280-289.	5.2	19

#	Article	IF	CITATIONS
145	Electrospun acid–base pair solid dispersions of quercetin. RSC Advances, 2014, 4, 58265-58271.	3.6	31
146	Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. International Journal of Pharmaceutics, 2014, 477, 369-379.	5.2	139
147	Amorphous Formulations of Indomethacin and Griseofulvin Prepared by Electrospinning. Molecular Pharmaceutics, 2014, 11, 4327-4338.	4.6	58
148	Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties. ACS Applied Materials & Interfaces, 2014, 6, 16304-16311.	8.0	112
149	Electrospun glycopolymer fibers for lectin recognition. Polymer Chemistry, 2014, 5, 3009-3017.	3.9	16
150	Pulsatile drug release from electrospun poly(ethylene oxide)–sodium alginate blend nanofibres. Journal of Materials Chemistry B, 2014, 2, 1400-1407.	5.8	31
151	Self-assembled liposomes from electrosprayed polymer-based microparticles. Colloid and Polymer Science, 2014, 292, 2325-2334.	2.1	5
152	Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process. Nanoscale Research Letters, 2014, 9, 258.	5.7	47
153	Galactose functionalized injectable thermoresponsive microgels for sustained protein release. Colloids and Surfaces B: Biointerfaces, 2014, 113, 368-374.	5.0	12
154	A kinetic and mechanistic study into the formation of the Cu–Cr layered double hydroxide. Physical Chemistry Chemical Physics, 2013, 15, 8616.	2.8	12
155	Liquid–Liquid–Solid Triple-Phase Data for Aqueous Two-Phase Systems comprising Ethanol–1-Propanol—2-Propanol–Acetone and Salts. Journal of Chemical & Engineering Data, 2013, 58, 3314-3319.	1.9	6
156	Self-assembled core-shell Fe3O4@SiO2 nanoparticles from electrospun fibers. Materials Research Bulletin, 2013, 48, 3058-3064.	5.2	14
157	Dual drug release nanocomposites prepared using a combination of electrospraying and electrospinning. RSC Advances, 2013, 3, 4652.	3.6	85
158	Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydrate Polymers, 2013, 94, 147-153.	10.2	198
159	The first hydroxy double salt tablet formulation. RSC Advances, 2013, 3, 358-361.	3.6	5
160	Electrospinning using a Teflon-coated spinneret. Applied Surface Science, 2013, 284, 889-893.	6.1	15
161	Smooth preparation of ibuprofen/zein microcomposites using an epoxy-coated electrospraying head. Materials Letters, 2013, 93, 125-128.	2.6	25
162	Fabrication and aggregation of thermoresponsive glucose-functionalized double hydrophilic copolymers. Colloids and Surfaces B: Biointerfaces, 2013, 105, 180-186.	5.0	15

#	Article	IF	CITATIONS
163	A simple route to form magnetic chitosan nanoparticles from coaxial-electrospun composite nanofibers. Journal of Materials Science, 2013, 48, 3991-3998.	3.7	22
164	Flexible Free-Standing Luminescent Two-Component Fiber Films with Tunable Hierarchical Structures Based on Hydrogen-Bonding Architecture. Langmuir, 2013, 29, 15673-15681.	3.5	12
165	Novel electrospun nanofibers incorporating polymeric prodrugs of ketoprofen: Preparation, characterization, and <i>in vitro</i> sustained release. Journal of Applied Polymer Science, 2013, 130, 1570-1577.	2.6	3
166	The selective intercalation of organic carboxylates and sulfonates into hydroxy double salts. Journal of Materials Chemistry, 2012, 22, 13600.	6.7	18
167	A systematic study of captopril-loaded polyester fiber mats prepared by electrospinning. International Journal of Pharmaceutics, 2012, 439, 100-108.	5.2	31
168	Modified coaxial electrospinning for the preparation of high-quality ketoprofen-loaded cellulose acetate nanofibers. Carbohydrate Polymers, 2012, 90, 1016-1023.	10.2	136
169	High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale, 2012, 4, 3640.	5.6	144
170	Electrospun nanofibers in drug delivery: recent developments and perspectives. Therapeutic Delivery, 2012, 3, 515-533.	2.2	71
171	Intercalation and Controlled Release of Bioactive Ions Using a Hydroxy Double Salt. Industrial & Engineering Chemistry Research, 2012, 51, 2913-2921.	3.7	28
172	Coaxial electrospinning with sodium dodecylbenzene sulfonate solution for high quality polyacrylonitrile nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 161-168.	4.7	57
173	Metal chelate affinity precipitation: Purification of BSA using poly(N-vinylcaprolactam-co-methacrylic) Tj ETQq1 1	0.784314	f rgBT /Overla
174	Electrospun polyacrylonitrile-glycopolymer nanofibrous membranes for enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 15-22.	1.8	51
175	Solid lipid nanoparticles self-assembled from electrosprayed polymer-based microparticles. Journal of Materials Chemistry, 2011, 21, 15957.	6.7	44
176	Self-assembled liposomes from amphiphilic electrospun nanofibers. Soft Matter, 2011, 7, 8239.	2.7	67
177	New insights into the intercalation chemistry of Al(OH)3. Dalton Transactions, 2011, 40, 6012.	3.3	43
178	Mg/Al-CO3 layered double hydroxide nanorings. Journal of Materials Chemistry, 2011, 21, 14741.	6.7	29
179	The application of statistical methodology to the analysis of time-resolved X-ray diffraction data. Analytical Methods, 2011, 3, 814.	2.7	12
180	Preparation of ultrafine fast-dissolving feruloyl-oleyl-glycerol-loaded polyvinylpyrrolidone fiber mats via electrospinning. Colloids and Surfaces B: Biointerfaces, 2011, 88, 304-309.	5.0	47

#	Article	IF	CITATIONS
181	The intercalation of flavouring compounds into layered double hydroxides. Journal of Materials Chemistry, 2011, 21, 17896.	6.7	20
182	Hydroxy double salts as versatile storage and delivery matrices. Journal of Materials Chemistry, 2011, 21, 1822-1828.	6.7	34
183	Reverse Micelle Synthesis of Coâ^'Al LDHs: Control of Particle Size and Magnetic Properties. Chemistry of Materials, 2011, 23, 171-180.	6.7	92
184	The intercalation of bicyclic and tricyclic carboxylates into layered double hydroxides. Journal of Solid State Chemistry, 2010, 183, 2877-2885.	2.9	8
185	Incorporation of phosphorus oxyacids into layered double hydroxides. Solid State Sciences, 2009, 11, 1229-1238.	3.2	22
186	Recent Developments in the Use of Layered Double Hydroxides as Host Materials for the Storage and Triggered Release of Functional Anions. Industrial & Engineering Chemistry Research, 2009, 48, 10196-10205.	3.7	129
187	A thermodynamically stable layered double hydroxide heterostructure. Journal of Materials Chemistry, 2009, 19, 4211.	6.7	11
188	A synchrotron radiation study of the hydrothermal synthesis of layered double hydroxides from MgO and Al2O3 slurries. Green Chemistry, 2007, 9, 373.	9.0	35
189	Staging during anion-exchange intercalation into [LiAl2(OH)6]Cl·yH2O: structural and mechanistic insights. Dalton Transactions, 2007, , 3499.	3.3	34
190	Reversible lithium insertion and copper extrusion in layered oxysulfides. Chemical Communications, 2006, , 2869.	4.1	36
191	Intercalation chemistry of the novel layered double hydroxides [MAl4(OH)12](NO3)2·yH2O (M = Zn, Cu,) Tj ET	Qq1_1 0.7	84314 rgBT /
192	Incorporation of Li into MnOOH:Â An In Situ X-ray and Neutron Diffraction Study. Chemistry of Materials, 2006, 18, 3801-3807.	6.7	15
193	A Kinetic Study of the Intercalation of Lithium Salts into Al(OH)3. Journal of Physical Chemistry B, 2006, 110, 10619-10629.	2.6	42
194	Intercalation chemistry of the novel layered double hydroxides [MAl4(OH)12](NO3)2·yH2O (M = Zn, Cu,) Tj ET 2006, 16, 1222.	Qq0 0 0 rg 6.7	gBT /Overlock 63
195	Selective Anion-Exchange Properties of Second-Stage Layered Double Hydroxide Heterostructures. Chemistry of Materials, 2006, 18, 4312-4318.	6.7	55
196	Towards understanding, control and application of layered double hydroxide chemistry. Journal of Materials Chemistry, 2006, 16, 3065.	6.7	526
197	New phosphonate intercalates of [Ca2Al(OH)6]NO3â‹yH2O: A synthetic and kinetic study. Solid State Sciences, 2006, 8, 971-980.	3.2	26
198	Graphite Powder and Multiwalled Carbon Nanotubes Chemically Modified with 4-Nitrobenzylamine. ChemPhysChem, 2005, 6, 352-362.	2.1	51

#	Article	IF	CITATIONS
199	Factors Influencing Staging during Anion-Exchange Intercalation into [LiAl2(OH)6]X·mH2O (X = Cl-,) Tj ETQq1 1	0,784314 6.7	rgBT /Overl
200	Time-Resolved, In Situ X-ray Diffraction Studies of Staging during Phosphonic Acid Intercalation into [LiAl2(OH)6]Cl·H2O. Chemistry of Materials, 2004, 16, 975-981.	6.7	62
201	A novel family of layered double hydroxides—[MAl4(OH)12](NO3)2·xH2O (M = Co, Ni, Cu, Zn). Journal of Materials Chemistry, 2004, 14, 2369-2371.	6.7	93
202	The formation of ordered heterostructures during the intercalation of phosphonic acids into a layered double hydroxide. Chemical Communications, 2003, , 1816.	4.1	29