Lars Baltzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/386339/publications.pdf

Version: 2024-02-01

759233 642732 23 549 12 23 citations h-index g-index papers 27 27 27 579 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10170-10174.	7.1	167
2	Design, synthesis and solution structure of a helix–loop–helix dimer—a template for the rational design of catalytically active polypeptides. Journal of the Chemical Society Perkin Transactions II, 1995, , 2047-2056.	0.9	57
3	Designed, Functionalized Helixâ^'Loopâ^'Helix Motifs that Bind Human Carbonic Anhydrase II:Â A New Class of Synthetic Receptor Molecules. Journal of the American Chemical Society, 2004, 126, 4464-4465.	13.7	44
4	Structure and Function of an Aromatic Ensemble That Restricts the Dynamics of the Hydrophobic Core of a Designed Helix-Loop-Helix Dimer. Journal of the American Chemical Society, 1997, 119, 8598-8607.	13.7	40
5	Designed, Folded Polypeptide Scaffolds That Combine Key Biosensing Events of Recognition and Reporting. Journal of Organic Chemistry, 2002, 67, 3120-3123.	3.2	32
6	Incorporation of a single His residue by rational design enables thiol-ester hydrolysis by human glutathione transferase A1-1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13163-13167.	7.1	29
7	The Binding of Human Carbonic Anhydrase II by Functionalized Folded Polypeptide Receptors. Chemistry and Biology, 2005, 12, 1245-1252.	6.0	24
8	The Site-Selective Glycosylation of a Designed Helix-Loop-Helix Polypeptide Motif. Journal of Organic Chemistry, 1998, 63, 1366-1367.	3.2	21
9	Specific functionalization of CTAB stabilized anisotropic gold nanoparticles with polypeptides for folding-mediated self-assembly. Journal of Materials Chemistry, 2012, 22, 20368.	6.7	21
10	Powerful Protein Binders from Designed Polypeptides and Small Organic Molecules—A General Concept for Protein Recognition. Angewandte Chemie - International Edition, 2011, 50, 1823-1827.	13.8	19
11	Crossing borders to bind proteins—a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set. Analytical and Bioanalytical Chemistry, 2011, 400, 1653-1664.	3.7	18
12	Polypeptide Conjugate Binders that Discriminate between Two Isoforms of Human Carbonic Anhydrase in Human Blood. ChemBioChem, 2011, 12, 559-566.	2.6	12
13	Mixed pentafluorophenyl and o-fluorophenyl esters of aliphatic dicarboxylic acids: efficient tools for peptide and protein conjugation. RSC Advances, 2012, 2, 908-914.	3.6	12
14	The molecular recognition of phosphorylated proteins by designed polypeptides conjugated to a small molecule that binds phosphate. Organic and Biomolecular Chemistry, 2011, 9, 7697.	2.8	11
15	Improved molecular recognition of Carbonic Anhydrase IX by polypeptide conjugation to acetazolamide. Bioorganic and Medicinal Chemistry, 2017, 25, 5838-5848.	3.0	8
16	Powerful Binders for the D-Dimer by Conjugation of the GPRP Peptide to Polypeptides from a Designed Set—Illustrating a General Route to New Binders for Proteins. Bioconjugate Chemistry, 2013, 24, 17-25.	3.6	6
17	Exploring Nonâ€obvious Hydrophobic Binding Pockets on Protein Surfaces: Increasing Affinities in Peptide–Protein Interactions. ChemBioChem, 2017, 18, 1396-1407.	2.6	5
18	Conjugation of a Dipicolyl Chelate to Polypeptide Conjugates Increases Binding Affinities for Human Serum Albumin and Survival Times in Human Serum. ChemBioChem, 2017, 18, 1408-1414.	2.6	5

#	Article	IF	CITATIONS
19	High-affinity recognition of the human C-reactive protein independent of phosphocholine. Organic and Biomolecular Chemistry, 2017, 15, 4644-4654.	2.8	4
20	Nucleophile selectivity in the acyl transfer reaction of a designed enzyme. Biopolymers, 2005, 79, 292-299.	2.4	3
21	A synthetic polypeptide conjugate from a 42â€residue polypeptide and salicylhydroxamic acid binds human myeloperoxidase with high affinity. Journal of Peptide Science, 2012, 18, 731-739.	1.4	3
22	Acid–Base Catalysis in Designed Peptides. , 0, , 1079-1103.		0
23	Colorimetric sensing: Small 21/2009. Small, 2009, 5, NA-NA.	10.0	0