Zoltan Kevei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3863350/publications.pdf

Version: 2024-02-01

567281 642732 2,398 23 15 23 h-index citations g-index papers 23 23 23 2539 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Missense mutation of a class B heat shock factor is responsible for the tomato bushy root-2 phenotype. Molecular Horticulture, 2022, 2, .	5.8	2
2	Overproduction of <scp>ABA</scp> in rootstocks alleviates salinity stress in tomato shoots. Plant, Cell and Environment, 2021, 44, 2966-2986.	5.7	30
3	Improving the Tea Withering Process Using Ethylene or UV-C. Journal of Agricultural and Food Chemistry, 2021, 69, 13596-13607.	5. 2	8
4	A loss-of-function allele of a TAC1-like gene (SITAC1) located on tomato chromosome 10 is a candidate for the Erectoid leaf (Erl) mutation. Euphytica, 2019, 215, 1.	1.2	9
5	BIFURCATE FLOWER TRUSS: a novel locus controlling inflorescence branching in tomato contains a defective MAP kinase gene. Journal of Experimental Botany, 2018, 69, 2581-2593.	4.8	6
6	Identification of novel stress-responsive biomarkers from gene expression datasets in tomato roots. Functional Plant Biology, 2016, 43, 783.	2.1	7
7	Resequencing at $3\%40$ -Fold Depth of the Parental Genomes of a <i>Solanum lycopersicum </i> \tilde{A} — <i>S. pimpinellifolium </i> Recombinant Inbred Line Population and Characterization of Frame-Shift InDels That Are Highly Likely to Perturb Protein Function. G3: Genes, Genomes, Genetics, 2015, 5, 971-981.	1.8	18
8	DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns. EMBO Journal, 2012, 31, 2981-2993.	7.8	88
9	Conserved CDC20 Cell Cycle Functions Are Carried out by Two of the Five Isoforms in Arabidopsis thaliana. PLoS ONE, 2011, 6, e20618.	2.5	71
10	Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis. Science, 2010, 327, 1122-1126.	12.6	525
11	Genomic Organization and Evolutionary Insights on <i>GRP</i> and <i>NCR</i> Genes, Two Large Nodule-Specific Gene Families in <i>Medicago truncatula</i> Molecular Plant-Microbe Interactions, 2007, 20, 1138-1148.	2.6	118
12	3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 Interacts with NORK and Is Crucial for Nodulation in <i>Medicago truncatula</i>). Plant Cell, 2007, 19, 3974-3989.	6.6	158
13	Nuclear DNA Endoreduplication and Expression of the Mitotic Inhibitor Ccs52 Associated to Determinate and Lupinoid Nodule Organogenesis. Molecular Plant-Microbe Interactions, 2006, 19, 173-180.	2.6	32
14	Strategies to obtain stable transgenic plants from non-embryogenic lines: complementation of the nn 1 mutation of the NORK gene in Medicago sativa MN1008. Plant Cell Reports, 2006, 25, 799-806.	5 . 6	2
15	Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Molecular Genetics and Genomics, 2005, 274, 644-657.	2.1	29
16	Arabidopsis Anaphase-Promoting Complexes: Multiple Activators and Wide Range of Substrates Might Keep APC Perpetually Busy. Cell Cycle, 2005, 4, 4084-4092.	2.6	85
17	Arabidopsis anaphase-promoting complexes: multiple activators and wide range of substrates might keep APC perpetually busy. Cell Cycle, 2005, 4, 1084-92.	2.6	53
18	Comparative mapping between Medicago sativa and Pisum sativum. Molecular Genetics and Genomics, 2004, 272, 235-246.	2.1	150

ZOLTAN KEVEI

#	Article	IF	CITATION
19	Endoreduplication Mediated by the Anaphase-Promoting Complex Activator CCS52A Is Required for Symbiotic Cell Differentiation in Medicago truncatula Nodules. Plant Cell, 2003, 15, 2093-2105.	6.6	186
20	Glycine-Rich Proteins Encoded by a Nodule-Specific Gene Family Are Implicated in Different Stages of Symbiotic Nodule Development in Medicago Spp Molecular Plant-Microbe Interactions, 2002, 15, 922-931.	2.6	49
21	Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa). Molecular Genetics and Genomics, 2002, 266, 1012-1019.	2.1	13
22	A receptor kinase gene regulating symbiotic nodule development. Nature, 2002, 417, 962-966.	27.8	731
23	FISH Chromosome Mapping Allowing Karyotype Analysis in Medicago truncatula Lines Jemalong J5 and R-108-1. Molecular Plant-Microbe Interactions, 1999, 12, 947-950.	2.6	28