List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3863098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A TAXONOMY AND TREATMENT OF UNCERTAINTY FOR ECOLOGY AND CONSERVATION BIOLOGY. , 2002, 12, 618-628.		615
2	Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters, 2008, 4, 560-563.	2.3	552
3	Guiding ecological principles for marine spatial planning. Marine Policy, 2010, 34, 955-966.	3.2	435
4	ROBUST DECISION-MAKING UNDER SEVERE UNCERTAINTY FOR CONSERVATION MANAGEMENT. , 2005, 15, 1471-1477.		318
5	Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3725-3734.	7.1	276
6	Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling, 2002, 157, 313-329.	2.5	221
7	Buying into conservation: intrinsic versus instrumental value. Trends in Ecology and Evolution, 2009, 24, 187-191.	8.7	159
8	Accounting for uncertainty in marine reserve design. Ecology Letters, 2006, 9, 2-11.	6.4	144
9	Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biology Letters, 2016, 12, 20150843.	2.3	137
10	Relationships between Human Disturbance and Wildlife Land Use in Urban Habitat Fragments. Conservation Biology, 2008, 22, 99-109.	4.7	127
11	A formal model for consensus and negotiation in environmental management. Journal of Environmental Management, 2006, 80, 167-176.	7.8	106
12	Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Science of the Total Environment, 2018, 627, 304-313.	8.0	96
13	Big data for forecasting the impacts of global change on plant communities. Global Ecology and Biogeography, 2017, 26, 6-17.	5.8	83
14	A proposal for fuzzy International Union for the Conservation of Nature (IUCN) categories and criteria. Biological Conservation, 2000, 92, 101-108.	4.1	80
15	Role of Ecological Modeling in Risk Assessment. Human and Ecological Risk Assessment (HERA), 2003, 9, 939-972.	3.4	79
16	Equivalence of methods for uncertainty propagation of real-valued random variables. International Journal of Approximate Reasoning, 2004, 36, 1-30.	3.3	68
17	Comparing predictions of extinction risk using models and subjective judgement. Acta Oecologica, 2004, 26, 67-74.	1.1	66
18	Effects of wind farms and food scarcity on a large scavenging bird species following an epidemic of bovine spongiform encephalopathy. Journal of Applied Ecology, 2012, 49, 109-117.	4.0	66

#	Article	IF	CITATIONS
19	Species prioritization for monitoring and management in regional multiple species conservation plans. Diversity and Distributions, 2008, 14, 462-471.	4.1	65
20	Is it a Crime to Belong to a Reference Class. Journal of Political Philosophy, 2001, 9, 168-181.	1.2	61
21	Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source of input data. Journal of Environmental Management, 2011, 92, 1882-1893.	7.8	60
22	Bioclimatic velocity: the pace of species exposure to climate change. Diversity and Distributions, 2014, 20, 169-180.	4.1	60
23	Comprehensive criteria for biodiversity evaluation in conservation planning. Biodiversity and Conservation, 2007, 16, 2715-2728.	2.6	57
24	Treatments of Uncertainty and Variability in Ecological Risk Assessment of Single-Species Populations. Human and Ecological Risk Assessment (HERA), 2003, 9, 889-906.	3.4	55
25	The conservation game. Biological Conservation, 2011, 144, 1246-1253.	4.1	54
26	Assessing the sustainability of freshwater systems: A critical review of composite indicators. Ambio, 2016, 45, 765-780.	5.5	54
27	Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. Clobal Change Biology, 2013, 19, 858-869.	9.5	53
28	Effects of uncertainty and variability on population declines and IUCN Red List classifications. Conservation Biology, 2018, 32, 916-925.	4.7	53
29	Cumulative effects of land use, altered fire regime and climate change on persistence of <i>Ceanothus verrucosus</i> , a rare, fireâ€dependent plant species. Global Change Biology, 2010, 16, 2518-2529.	9.5	51
30	Realism and Relevance of Ecological Models Used in Chemical Risk Assessment. Human and Ecological Risk Assessment (HERA), 2003, 9, 907-938.	3.4	50
31	Analysis and Portrayal of Uncertainty in a Food-Web Exposure Model. Human and Ecological Risk Assessment (HERA), 2002, 8, 1757-1777.	3.4	45
32	The effects of fire and predators on the long-term persistence of an endangered shrub, Grevillea caleyi. Biological Conservation, 2003, 109, 73-83.	4.1	43
33	Habitat fragmentation and altered fire regime create tradeâ€offs for an obligate seeding shrub. Ecology, 2010, 91, 1114-1123.	3.2	41
34	Got Hybridization? A Multidisciplinary Approach for Informing Science Policy. BioScience, 2010, 60, 384-388.	4.9	40
35	Niche models tell half the story: spatial context and lifeâ€history traits influence species responses to global change. Journal of Biogeography, 2012, 39, 1266-1277.	3.0	40
36	Inferring extinctions III: A cost-benefit framework for listing extinct species. Biological Conservation, 2017, 214, 336-342.	4.1	40

#	Article	IF	CITATIONS
37	Protocols for listing threatened species can forecast extinction. Ecology Letters, 2004, 7, 1101-1108.	6.4	38
38	A review of protocols for selecting species at risk in the context of US Forest Service viability assessments. Acta Oecologica, 2004, 26, 75-83.	1.1	37
39	Evaluation of assisted colonization strategies under global change for a rare, fireâ€dependent plant. Global Change Biology, 2012, 18, 936-947.	9.5	36
40	Changes in butterfly distributions and species assemblages on a Neotropical mountain range in response to global warming and anthropogenic land use. Diversity and Distributions, 2016, 22, 1085-1098.	4.1	36
41	Using an individual-based model to examine the roles of habitat fragmentation and behavior on predator–prey relationships in seagrass landscapes. Landscape Ecology, 2008, 23, 75-89.	4.2	35
42	Linking spatially explicit species distribution and population models to plan for the persistence of plant species under global change. Environmental Conservation, 2014, 41, 97-109.	1.3	35
43	The role of demography, intraâ€species variation, and species distribution models in species' projections under climate change. Ecography, 2015, 38, 221-230.	4.5	35
44	Implications of different population model structures for management of threatened plants. Conservation Biology, 2017, 31, 459-468.	4.7	29
45	The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus) Tj ETQq1 1	0.784314 2.5	rgB <u>T</u> {Overlo
46	Assessing and Prioritizing Ecological Communities for Monitoring in a Regional Habitat Conservation Plan. Environmental Management, 2008, 42, 165-179.	2.7	27
47	Fire Management, Managed Relocation, and Land Conservation Options for Longâ€Lived Obligate Seeding Plants under Global Changes in Climate, Urbanization, and Fire Regime. Conservation Biology, 2014, 28, 1057-1067.	4.7	27
48	Shrinking windows of opportunity for oak seedling establishment in southern California mountains. Ecosphere, 2016, 7, e01573.	2.2	26
49	Inferring extinctions I: A structured method using information on threats. Biological Conservation, 2017, 214, 320-327.	4.1	26
50	Climatic and geometric constraints as driving factors of butterfly species richness along a Neotropical elevational gradient. Journal of Insect Conservation, 2013, 17, 1169-1180.	1.4	24
51	Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem. International Journal of Geographical Information Science, 2014, 28, 1561-1589.	4.8	22
52	Averaged 30 year climate change projections mask opportunities for species establishment. Ecography, 2016, 39, 844-845.	4.5	22
53	A stochastic model for seagrass (Zostera muelleri) in Port Phillip Bay, Victoria, Australia. Ecological Modelling, 1999, 118, 131-148.	2.5	21
54	Right Decisions or Happy Decisionâ€makers?. Social Epistemology, 2007, 21, 349-368.	1.2	21

#	Article	IF	CITATIONS
55	Planning, implementing, and monitoring multipleâ€species habitat conservation plans. American Journal of Botany, 2011, 98, 559-571.	1.7	21
56	Does functional type vulnerability to multiple threats depend on spatial context in <scp>M</scp> editerraneanâ€climate regions?. Diversity and Distributions, 2013, 19, 1263-1274.	4.1	20
57	Combined Influences of Model Choice, Data Quality, and Data Quantity When Estimating Population Trends. PLoS ONE, 2015, 10, e0132255.	2.5	20
58	Fuzzy Sets and Threatened Species Classification. Conservation Biology, 2000, 14, 1197-1199.	4.7	18
59	Cost-Effectiveness of Translocation Options for a Threatened Waterbird. Conservation Biology, 2011, 25, 726-735.	4.7	18
60	The natural environment is valuable but not infinitely valuable. Conservation Letters, 2010, 3, 224-228.	5.7	17
61	Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model. Ecological Modelling, 2015, 301, 27-39.	2.5	17
62	The persistence niche: what makes it and what breaks it for two fire-prone plant species. Australian Journal of Botany, 2007, 55, 273.	0.6	16
63	Voting Systems for Environmental Decisions. Conservation Biology, 2014, 28, 322-332.	4.7	15
64	The SAFE index is not safe. Frontiers in Ecology and the Environment, 2011, 9, 485-486.	4.0	12
65	Fire management to combat disease: turning interactions between threats into conservation management. Oecologia, 2011, 167, 873-882.	2.0	12
66	Legal Decisions and the Reference Class Problem. International Journal of Evidence and Proof, 2007, 11, 274-285.	0.4	11
67	Using the Freshwater Health Index to Assess Hydropower Development Scenarios in the Sesan, Srepok and Sekong River Basin. Water (Switzerland), 2020, 12, 788.	2.7	11
68	Evaluating the sensitivity of dendritic connectivity to fish pass efficiency for the Sesan, Srepok and Sekong tributaries of the Lower Mekong. Ecological Indicators, 2018, 91, 570-574.	6.3	10
69	Integrating Ecosystem Services Into Water Resource Management: An Indicator-Based Approach. Environmental Management, 2022, , 1.	2.7	8
70	Cumulative effects of land use, altered fire regime and climate change on persistence of <i>Ceanothus verrucosus</i> , a rare, fireâ€dependent plant species. Global Change Biology, 2012, 18, 2980-2980.	9.5	4
71	Ecological Synthesis and Its Role in Advancing Knowledge. BioScience, 0, , .	4.9	4
72	Response to Sagoff. Trends in Ecology and Evolution, 2009, 24, 644-644.	8.7	2

#	Article	IF	CITATIONS
73	Rejoinder: uncertainty and decision making. Ecology Letters, 2006, 9, 13-14.	6.4	1