John J G Reijmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/386269/publications.pdf

Version: 2024-02-01

129 papers

4,466 citations

94433 37 h-index 56 g-index

136 all docs

136 does citations

136 times ranked 3480 citing authors

#	Article	IF	CITATIONS
1	Homo erectus at Trinil on Java used shells for tool production and engraving. Nature, 2015, 518, 228-231.	27.8	299
2	The abrupt onset of the modern South Asian Monsoon winds. Scientific Reports, 2016, 6, 29838.	3.3	121
3	Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology, 1997, 44, 977-990.	3.1	112
4	Sedimentary patterns and geometries of the Bahamian outer carbonate ramp (Miocene-Lower Pliocene,) Tj ETQq0	0 0 0 rgBT	/Overlock 10
5	Acoustic properties in travertines and their relation to porosity and pore types. Marine and Petroleum Geology, 2015, 59, 320-335.	3.3	92
6	Mapping bathymetry and depositional facies on Great Bahama Bank. Sedimentology, 2015, 62, 566-589.	3.1	88
7	Monsoon-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology, 2009, 37, 867-870.	4.4	86
8	Postglacial flooding history of Mayotte Lagoon (Comoro Archipelago, southwest Indian Ocean). Marine Geology, 2003, 194, 181-196.	2.1	85
9	Drowning of a Lower Jurassic carbonate platform: Jbel Bou Dahar, High Atlas, Morocco. Facies, 1999, 41, 81.	1.4	82
10	Seaâ€level and oceanâ€current control on carbonateâ€platform growth, <scp>M</scp> aldives, <scp>I</scp> ndian <scp>O</scp> cean. Basin Research, 2013, 25, 172-196.	2.7	76
11	Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean). Progress in Earth and Planetary Science, 2018, 5, .	3.0	74
12	Calciturbidite composition related to exposure and flooding of a carbonate platform (Triassic,) Tj ETQq0 0 0 rgBT	/gverlock	10 Tf 50 302
13	New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank. Geology, 2012, 40, 603-606.	4.4	71
14	Periplatform drift: The combined result of contour current and off-bank transport along carbonate platforms. Geology, 2014, 42, 871-874.	4.4	70
15	Heterozoan carbonates: When, where and why? A synthesis on parameters controlling carbonate production and occurrences. Earth-Science Reviews, 2018, 182, 50-67.	9.1	63
16	The stable carbon isotopic composition of organic material in platform derived sediments: implications for reconstructing the global carbon cycle. Sedimentology, 2012, 59, 319-335.	3.1	61
17	Lowstand carbonates, highstand sandstones?. Sedimentary Geology, 2003, 155, 1-12.	2.1	60
18	Holocene millennial to centennial carbonate cyclicity recorded in slope sediments of the Great Bahama Bank and its climatic implications. Sedimentology, 2005, 52, 161-181.	3.1	60

#	Article	IF	Citations
19	Growing spherulitic calcite grains in saline, hyperalkaline lakes: experimental evaluation of the effects of Mg-clays and organic acids. Sedimentary Geology, 2016, 335, 93-102.	2.1	58
20	The mineralogical composition of precursor sediments of calcareous rhythmites: a new approach. International Journal of Earth Sciences, 2001, 90, 795-812.	1.8	57
21	The influence of Late Cretaceous tectonic processes on sedimentation patterns along the northeastern Arabian plate margin (Fars Province, SW Iran). Geological Society Special Publication, 2010, 330, 211-251.	1.3	57
22	Pore space evolution and elastic properties of platform carbonates (Urgonian limestone,) Tj ETQq0 0 0 rgBT /Ovo	erlock 10 1 2.1	f 50 622 Td
23	Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian) Tj ETQq1 1 ().784314 ı 2.1	gBT/Overlo
24	Canyon morphology on a modern carbonate slope of the Bahamas: Evidence of regional tectonic tilting. Geology, 2012, 40, 771-774.	4.4	55
25	Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central) Tj ETQq1 1	0.784314	l rggT /Overl
26	Systems tracts sedimentology in the lagoon of Mayotte associated with the Holocene transgression. Sedimentary Geology, 2003, 160, 57-79.	2.1	52
27	The fertilization of the Bahamas by Saharan dust: A trigger for carbonate precipitation?. Geology, 2014, 42, 671-674.	4.4	50
28	Factors controlling holocene reef growth: An interdisciplinary approach. Facies, 1995, 32, 145-188.	1.4	49
29	LATE CRETACEOUS TECTONIC AND SEDIMENTARY EVOLUTION OF THE BANDAR ABBAS AREA, FARS REGION, SOUTHERN IRAN. Journal of Petroleum Geology, 2011, 34, 157-180.	1.5	47
30	Timing and distribution of calciturbidites around a deeply submerged carbonate platform in a seismically active setting (Pedro Bank, Northern Nicaragua Rise, Caribbean Sea). International Journal of Earth Sciences, 2003, 92, 573-592.	1.8	46
31	Carbonate platform facies reflected in carbonate basin facies (Triassic, northern Calcareous Alps,) Tj ETQq1 1 0.7	'84314 rgl 1.4	BT /Overlock
32	Marine carbonate factories: Review and update. Sedimentology, 2021, 68, 1729-1796.	3.1	44
33	Fracturing and fluidâ€flow during postâ€rift subsidence in carbonates of the JandaÃra Formation, Potiguar Basin, <scp>NE</scp> Brazil. Basin Research, 2017, 29, 836-853.	2.7	42
34	Carbonate delta drift: A new sediment drift type. Marine Geology, 2018, 401, 98-111.	2.1	42
35	Seismic architecture and sediment distribution within the Holocene barrier reef–lagoon complex of Mayotte (Comoro archipelago, SW Indian Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 175, 343-368.	2.3	41
36	A depositional model for spherulitic carbonates associated with alkaline, volcanic lakes. Marine and Petroleum Geology, 2017, 86, 168-191.	3.3	41

#	Article	IF	Citations
37	From platform to basin: the evolution of a Paleocene carbonate margin (Eastern Desert, Egypt). International Journal of Earth Sciences, 2003, 92, 624-640.	1.8	40
38	Sediment characteristics in reef areas influenced by eutrophication-related alterations of benthic communities and bioerosion processes. Marine Geology, 2008, 250, 114-127.	2.1	39
39	Giant pockmarks in a carbonate platform (Maldives, Indian Ocean). Marine Geology, 2011, 289, 1-16.	2.1	39
40	Fracturing and calcite cementation controlling fluid flow in the shallow-water carbonates of the JandaÃra Formation, Brazil. Marine and Petroleum Geology, 2017, 80, 382-393.	3.3	39
41	Pliocene/Pleistocene platform facies transition recorded in calciturbidites (Exuma Sound, Bahamas). Sedimentary Geology, 1992, 78, 171-179.	2.1	38
42	Lithofacies and depositional processes on a high, steep-margined Carboniferous (Bashkirian–Moscovian) carbonate platform slope, Sierra del Cuera, NW Spain. Sedimentary Geology, 2004, 166, 145-156.	2.1	38
43	Holocene Atlantic climate variations deduced from carbonate periplatform sediments (leeward) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 3.0	/Overlock 10
44	Controls on grain-size patterns in periplatform carbonates: Marginal setting versus glacio-eustacy. Sedimentary Geology, 2005, 175, 99-113.	2.1	37
45	Compositional variations in calciturbidites and calcidebrites in response to sea-level fluctuations (Exuma Sound, Bahamas). Facies, 2012, 58, 493-507.	1.4	36
46	Quaternary slope development of the western, leeward margin of the Great Bahama Bank. Marine Geology, 2002, 185, 143-164.	2.1	35
47	Into the deep: A coarse-grained carbonate turbidite valley and canyon in ultra-deep carbonate setting. Marine Geology, 2019, 407, 316-333.	2.1	35
48	Synchroneity of major Late Neogene sea level fluctuations and paleoceanographically controlled changes as recorded by two carbonate platforms. Paleoceanography, 2000, 15, 722-730.	3.0	33
49	Carbonate facies patterns in surface sediments of upwelling and nonâ€upwelling shelf environments (Panama, East Pacific). Sedimentology, 2012, 59, 32-56.	3.1	33
50	Calciturbidites and calcidebrites: Sea-level variations or tectonic processes?. Sedimentary Geology, 2015, 317, 53-70.	2.1	33
51	Carbonate slope morphology revealing a giant submarine canyon (Little Bahama Bank, Bahamas). Geology, 2018, 46, 31-34.	4.4	32
52	Facies patterns and subsidence history of the Jumilla-Cieza region (southeastern Spain). Sedimentary Geology, 1990, 67, 263-280.	2.1	31
53	Sedimentary processes determining the modern carbonate periplatform drift of Little Bahama Bank. Marine Geology, 2016, 378, 213-229.	2.1	31
54	Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quaternary Science Reviews, 2016, 144, 145-154.	3.0	31

#	Article	IF	CITATIONS
55	Sedimentation cycles and their diagenesis on the slope of a Miocene carbonate ramp (Bahamas, ODP) Tj ${\sf ETQq1\ 1}$	0,784314 2.1	rgBT /Overl
56	GROWTH RATES AND CARBONATE PRODUCTION BY CORALLINE RED ALGAE IN UPWELLING AND NON-UPWELLING SETTINGS ALONG THE PACIFIC COAST OF PANAMA. Palaios, 2011, 26, 420-432.	1.3	30
57	Relationship between Late Pleistocene seaâ€level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean). Sedimentology, 2012, 59, 1640-1658.	3.1	30
58	Carbonate mound development in contrasting settings on the Irish margin. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99, 297-306.	1.4	30
59	Carbonate slope morphology revealing sediment transfer from bank-to-slope (Little Bahama Bank,) Tj ETQq $1\ 1\ 0.7$	'84314 rgB	T /Overlo <mark>ck</mark>
60	Facies and faunal assemblage changes in response to the Holocene transgression in the Lagoon of Mayotte (Comoro Archipelago, SW Indian Ocean). Facies, 2005, 50, 391-408.	1.4	29
61	Sub-Milankovitch cycles in periplatform carbonates from the early Pliocene Great Bahama Bank. Paleoceanography, 2006, 21, n/a-n/a.	3.0	29
62	Bahamian carbonate platform development in response to sea-level changes and the closure of the Isthmus of Panama. International Journal of Earth Sciences, 2002, 91, 482-489.	1.8	28
63	The use of paleoceanographic proxies in carbonate periplatform settings—opportunities and pitfalls. Sedimentary Geology, 2005, 175, 131-152.	2.1	28
64	Facies Architecture of an Early Jurassic Carbonate Platform Slope (Jbel Bou Dahar, High Atlas,) Tj ETQq0 0 0 rgBT /	Oyerlock 1 [,] 1.6	0 Tf 50 382 27
65	Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle) Tj ETQq $1\ 1\ 0.78$	84314 rgB1 3.1	T.J.Overlock
66	Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank. Sedimentary Geology, 2018, 363, 96-117.	2.1	27
67	Compositional variations during phases of progradation and retrogradation of a Triassic carbonate platform (Picco di Vallandro/D½rrenstein, dolomites, Italy). Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1998, 87, 436-448.	1.3	26
68	Facies patterns within a Lower Jurassic upper slope to inner platform transect (Jbel Bou Dahar,) Tj ETQq0 0 0 rgBT	/Qyerlock	10 Tf 50 22:
69	Aragonite cycles: diagenesis caught in the act. Sedimentology, 2006, 53, 849-866.	3.1	26
70	Reef slope geometries and facies distribution: controlling factors (Messinian, SE Spain). Facies, 2014, 60, 737-753.	1.4	26
71	A two million year record of low-latitude aridity linked to continental weathering from the Maldives. Progress in Earth and Planetary Science, 2018, 5, .	3.0	26
72	Highâ€resolution sea surface reconstructions off Cape Hatteras over the last 10 ka. Paleoceanography, 2012, 27, .	3.0	25

#	Article	IF	Citations
73	Fluid evolution and ore deposition in the Harz Mountains revisited: isotope and crush-leach analyses of fluid inclusions. Mineralium Deposita, 2020, 55, 47-62.	4.1	25
74	Variations in petrophysical properties along a mixed siliciclastic carbonate ramp (Upper Jurassic, Ricla,) Tj ETQq0 0	g.gBT/0	Overlock 10 ⁻
75	Contour current imprints and contourite drifts in the Bahamian archipelago. Sedimentology, 2019, 66, 1192-1221.	3.1	24
76	On the settling of marine carbonate grains: Review and challenges. Earth-Science Reviews, 2021, 217, 103532.	9.1	24
77	Mineralogy and grain size variations along two carbonate margin-to-basin transects (Pedro Bank,) Tj ETQq1 1 0.78	34314 rgl 2.1	BT /Overlock
78	Lowstand wedges in carbonate platform slopes (Quaternary, Maldives, Indian Ocean). Depositional Record, 2016, 2, 196-207.	1.7	22
79	Clinoform composition and margin geometries of a Lower Cretaceous carbonate platform (Vercors,) Tj ETQq1 1 0.	.784314 2.3	rgBT /Overlo
80	A Test of the Biogenicity Criteria Established for Microfossils and Stromatolites on Quaternary Tufa and Speleothem Materials Formed in the "Twilight Zone―at Caerwys, UK. Astrobiology, 2015, 15, 883-900.	3.0	21
81	Are spherulitic lacustrine carbonates an expression of large-scale mineral carbonation? A case study from the East Kirkton Limestone, Scotland. Gondwana Research, 2017, 48, 101-109.	6.0	21
82	Increased seasonality in the Gulf of Aqaba, Red Sea, recorded in the oxygen isotope record of aPorites lutea coral. Senckenbergiana Maritima, 1999, 30, 17-26.	0.5	20
83	A microbial role in the construction of Mono Lake carbonate chimneys?. Geobiology, 2018, 16, 540-555.	2.4	20
84	Whiting-related sediment export along the Middle Miocene carbonate ramp of Great Bahama Bank. International Journal of Earth Sciences, 2011, 100, 1875-1893.	1.8	19
85	Cyclic anoxia and organic rich carbonate sediments within a drowned carbonate platform linked to Antarctic ice volume changes: Late Oligocene-early Miocene Maldives. Earth and Planetary Science Letters, 2019, 521, 1-13.	4.4	19
86	Global impact of the Panamanian seaway closure. Eos, 2004, 85, 526.	0.1	18
87	Diagenetic controls on the elastic velocity of the early Triassic Upper Khartam Member (Khuff) Tj ETQq $1\ 1\ 0.7843$	14.rgBT /	Overlock 10
88	Quantification of input and compositional variations of calciturbidites in a Middle Triassic basinal succession (Seceda, Dolomites, Southern Alps). International Journal of Earth Sciences, 2003, 92, 593-609.	1.8	16
89	Belemnite-based strontium, carbon and oxygen isotope stratigraphy of the type area of the Maastrichtian Stage. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2011, 90, 259-270.	0.9	16
90	Paleo-redox fronts and their formation in carbonate mound sediments from the Rockall Trough. Marine Geology, 2011, 284, 86-95.	2.1	15

#	Article	IF	CITATIONS
91	On the architecture of intra-formational Mass-Transport Deposits: Insights from the carbonate slopes of Great Bahama Bank and the Apulian Carbonate Platform. Marine Geology, 2020, 427, 106205.	2.1	15
92	Restricted internal oxygen isotope exchange in calcite veins: Constraints from fluid inclusion and clumped isotope-derived temperatures. Geochimica Et Cosmochimica Acta, 2021, 297, 24-39.	3.9	15
93	Control of climate, sea-level fluctuations and tectonics on the pervasive dolomitization and porosity evolution of the Oligo-Miocene Asmari Formation (Dezful Embayment, SW Iran). Sedimentary Geology, 2022, 427, 106048.	2.1	15
94	The limited link between accommodation space, sediment thickness, and inner platform facies distribution (Holocene–Pleistocene, Bahamas). Depositional Record, 2019, 5, 400-420.	1.7	14
95	Carbonate slope reâ€sedimentation in a tectonicallyâ€active setting (Western Sicily Cretaceous) Tj ETQq1 1 0.78	34314 rgB	T <u>/</u> Qverlock
96	Physical properties of Cretaceous to Eocene platform-to-basin carbonates from Albania. Marine and Petroleum Geology, 2021, 128, 105022.	3.3	14
97	Seismic characterization of switching platform geometries and dominant carbonate producers (Miocene, Las Negras, Spain). Sedimentology, 2017, 64, 1676-1707.	3.1	13
98	Seismic stratigraphy of Dinantian carbonates in the southern Netherlands and northern Belgium. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, 353-379.	0.9	12
99	VARIATIONS IN PETROPHYSICAL PROPERTIES OF UPPER PALAEOZOIC MIXED CARBONATE AND NONâ€CARBONATE DEPOSITS, SPITSBERGEN, SVALBARD ARCHIPELAGO. Journal of Petroleum Geology, 2017, 40, 59-83.	1.5	11
100	Synthetic seismic model of a Permian biosiliceous carbonate – carbonate depositional system (Spitsbergen, Svalbard Archipelago). Marine and Petroleum Geology, 2018, 92, 78-93.	3.3	11
101	Fluid-flow evolution in the Albanide fold-thrust belt: Insights from hydrogen and oxygen isotope ratios of fluid inclusions. AAPG Bulletin, 2019, 103, 2421-2445.	1.5	11
102	Middle Cenomanian–Turonian sequence stratigraphy of central-southern Tunisia: regional and global control on depositional patterns. Cretaceous Research, 2020, 111, 104446.	1.4	11
103	Carbonate platform production during the Cretaceous. Bulletin of the Geological Society of America, 2020, 132, 2606-2610.	3.3	11
104	Towards a morphology diagram for terrestrial carbonates: Evaluating the impact of carbonate supersaturation and alginic acid in calcite precipitate morphology. Geochimica Et Cosmochimica Acta, 2021, 306, 340-361.	3.9	11
105	Carbonate platformâ€toâ€basin correlation by means of grainâ€composition logs: an example from the Vercors (Cretaceous, SE France). Sedimentology, 1999, 46, 261-278.	3.1	10
106	Geological evolution of the Chalk Group in the northern Dutch North Sea: inversion, sedimentation and redeposition. Geological Magazine, 2019, 156, 1265-1284.	1.5	10
107	The dismantling of the Apulian carbonate platform during the late Campanian – early Maastrichtian in Albania. Cretaceous Research, 2019, 96, 83-106.	1.4	10
108	Carbonate slopes and gravity deposits. Sedimentary Geology, 2015, 315, 83-90.	2.1	9

#	Article	IF	CITATIONS
109	New insights in the development of synâ€depositional fractures in rimmed flatâ€topped carbonate platforms, Neogene carbonate complexes, Sorbas Basin, <scp>SE</scp> Spain. Basin Research, 2018, 30, 596-612.	2.7	9
110	Controlling Factors on Petrophysical and Acoustic Properties of Bioturbated Carbonates: (Upper) Tj ETQq0 0 0 r	gBT_/Over	lock 10 Tf 50 7
111	Paleo-facies distribution and sequence stratigraphic architecture of the Oligo-Miocene Asmari carbonate platform (southeast Dezful Embayment, Zagros Basin, SW Iran). Marine and Petroleum Geology, 2021, 128, 105016.	3.3	8
112	Carbonate Factories. Encyclopedia of Earth Sciences Series, 2016, , 80-84.	0.1	8
113	Development of a Pliocene mixed-carbonate siliciclastic reef (Limon, Costa Rica). Sedimentary Geology, 2011, 239, 37-47.	2.1	7
114	Linking carbonate sediment transfer to seafloor morphology: Insights from Exuma Valley, the Bahamas. Sedimentology, 2021, 68, 609-638.	3.1	7
115	Distinct petroacoustic signature in heterozoan and photozoan carbonates resulting from combined depositional and diagenetic processes. Marine and Petroleum Geology, 2021, 128, 104974.	3.3	7
116	Stenolaemate Bryozoa from the Upper Carboniferous of the Cantabrian Basin, Northern Spain. Senckenbergiana Lethaea, 2005, 85, 301-317.	0.3	5
117	Fracture distribution along an Upper Jurassic carbonate ramp, NE Spain. Marine and Petroleum Geology, 2016, 70, 201-221.	3.3	4
118	Interactions between sediment production and transport in the geometry of carbonate platforms: Insights from forward modeling of the Great Bank of Guizhou (Early to Middle Triassic), south China. Marine and Petroleum Geology, 2020, 118, 104416.	3.3	4
119	Petrophysics and sediment variability in a mixed alluvial to lacustrine carbonate system (Miocene,) Tj ETQq $1\ 1\ 0$.784314 r 1.7	gBT ₄ /Overlock
120	Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 533, 109283.	2.3	3
121	Analytical Artefacts Preclude Reliable Isotope Ratio Measurement of Internal Water in Coral Skeletons. Geostandards and Geoanalytical Research, 2022, 46, 563-577.	3.1	2
122	Dataset of characteristic remanent magnetization and magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform). Data in Brief, 2019, 27, 104666.	1.0	1
123	Comment on <i>Going with the flow: Experimental simulation of sediment transport from a foraminifera perspective'</i> by Ashâ€Mor <i>et al</i> . (2022), <i>Sedimentology</i> , 69, 1231â€1251. Sedimentology, 0, , .	3.1	1
124	DGG & GV 2001 MARGINS Meeting (Kiel, Germany)?New perspectives in carbonate sedimentology. International Journal of Earth Sciences, 2003, 92, 441-444.	1.8	0
125	Correction to: A two million year record of low-latitude aridity linked to continental weathering from the Maldives. Progress in Earth and Planetary Science, 2019, 6, .	3.0	0
126	Carbonate Factories., 2014, , 1-8.		0

#	Article	IF	CITATIONS
127	Wholesale Fracturing of Carbonate Rocks during Subsidence - Tectonics, Geometry and Implications for Reservoir Studies. , 2016, , .		0
128	Facies arrangement and cyclostratigraphic architecture of the Templet Member and the Kapp Starostin Formation (Permian) on Spitsbergen, Svalbard. Norwegian Journal of Geology, 0, , .	0.5	0
129	Comment on Brandano <i>et al</i> . (2022) – Introduction of —Understanding carbonate factories through palaeoecological and sedimentological signals – Tribute to Luis Pomar', <i>Sedimentology</i> , 69, 5–23. Sedimentology, 2022, 69, 2946-2951.	3.1	0