Martin Hewison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/386195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D binding protein/GCâ€globulin: a novel regulator of alpha cell function and glucagon secretion. Journal of Physiology, 2022, 600, 1119-1133.	1.3	3
2	Circulating Conjugated and Unconjugated Vitamin D Metabolite Measurements by Liquid Chromatography Mass Spectrometry. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 435-449.	1.8	19
3	Vitamin D Modulation of Mitochondrial Oxidative Metabolism and <scp>mTOR</scp> Enforces Stress Adaptations and Anticancer Responses. JBMR Plus, 2022, 6, e10572.	1.3	13
4	Vitamin D, vitamin D—binding protein, free vitamin D and COVID-19 mortality in hospitalized patients. American Journal of Clinical Nutrition, 2022, 115, 1367-1377.	2.2	12
5	1,25â€Dihydroxyvitamin D3 suppresses CD4 ⁺ Tâ€cell effector functionality by inhibition of glycolysis. Immunology, 2022, 166, 299-309.	2.0	6
6	Autoimmune disease and interconnections with vitamin D. Endocrine Connections, 2022, 11, .	0.8	28
7	Placental uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit. ELife, 2022, 11, .	2.8	31
8	There is more to life than serum vitamin D: a lesson from the past. Clinical Science, 2022, 136, 639-642.	1.8	0
9	The Vitamin D/Vitamin D receptor (VDR) axis in muscle atrophy and sarcopenia. Cellular Signalling, 2022, 96, 110355.	1.7	27
10	Vitamin D and miscarriage: a systematic review and meta-analysis. Fertility and Sterility, 2022, 118, 111-122.	0.5	26
11	Vitamin D and COVIDâ€19—Revisited. Journal of Internal Medicine, 2022, 292, 604-626.	2.7	15
12	Endothelial injury, F-actin and vitamin-D binding protein after hematopoietic stem cell transplant and association with clinical outcomes. Haematologica, 2021, 106, 1321-1329.	1.7	8
13	Effects of vitamin D supplementation on circulating concentrations of growth factors and immune-mediators in healthy women during pregnancy. Pediatric Research, 2021, 89, 554-562.	1.1	12
14	Vitamin D and Immune Regulation: Antibacterial, Antiviral, Antiâ€Inflammatory. JBMR Plus, 2021, 5, e10405.	1.3	158
15	Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: implications for COVID-19. Clinical Medicine, 2021, 21, e144-e149.	0.8	50
16	Protocol for an open-label feasibility study for a randomised controlled trial of vitamin D supplementation in Crohn's Disease patients with vitamin D deficiency: D-CODE Feasiblity study. Pilot and Feasibility Studies, 2021, 7, 79.	0.5	2
17	Trophoblast uptake of DBP regulates intracellular actin and promotes matrix invasion. Journal of Endocrinology, 2021, 249, 43-55.	1.2	11
18	Simultaneous measurement of 13 circulating vitamin D3 and D2 mono and dihydroxy metabolites using liquid chromatography mass spectrometry. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1642-1652.	1.4	27

#	Article	IF	CITATIONS
19	Association between vitamin D deficiency and exercise capacity in patients with CKD, a cross-sectional analysis. Journal of Steroid Biochemistry and Molecular Biology, 2021, 210, 105861.	1.2	2
20	Tolerogenic effects of 1,25-dihydroxyvitamin D on dendritic cells involve induction of fatty acid synthesis. Journal of Steroid Biochemistry and Molecular Biology, 2021, 211, 105891.	1.2	11
21	Low serum 1,25(OH)2D3 in end-stage renal disease: is reduced 1α-hydroxylase the only problem?. Endocrine Connections, 2021, 10, 1291-1298.	0.8	3
22	Preventing vitamin D deficiency during the COVID-19 pandemic: UK definitions of vitamin D sufficiency and recommended supplement dose are set too low. Clinical Medicine, 2021, 21, e48-e51.	0.8	37
23	Patient and public involvement in research design and oversight. Nurse Researcher, 2021, 29, 11-18.	0.3	4
24	Vitamin D, Autoimmune Disease and Rheumatoid Arthritis. Calcified Tissue International, 2020, 106, 58-75.	1.5	110
25	Vitamin D and COVID-19: evidence and recommendations for supplementation. Royal Society Open Science, 2020, 7, 201912.	1.1	54
26	Vitamin D and early rheumatoid arthritis. BMC Rheumatology, 2020, 4, 38.	0.6	5
27	Vitamin D Promotes Trophoblast Cell Induced Separation of Vascular Smooth Muscle Cells in Vascular Remodeling via Induction of G-CSF. Frontiers in Cell and Developmental Biology, 2020, 8, 601043.	1.8	13
28	Vitamin D and SARS-CoV-2 virus/COVID-19 disease. BMJ Nutrition, Prevention and Health, 2020, 3, 106-110.	1.9	116
29	Vitamin-D-Binding Protein Contributes to the Maintenance of α Cell Function and Glucagon Secretion. Cell Reports, 2020, 31, 107761.	2.9	19
30	Screening and Treatment of Vitamin D Deficiency in UK Patients with Crohn's Disease: Self-Reported Practice among Gastroenterologists. Nutrients, 2020, 12, 1064.	1.7	4
31	P222â \in fVitamin D in early rheumatoid arthritis. Rheumatology, 2020, 59, .	0.9	0
32	MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. European Journal of Endocrinology, 2020, 183, R133-R147.	1.9	259
33	Vitamin D Binding Protein and the Biological Activity of Vitamin D. Frontiers in Endocrinology, 2019, 10, 718.	1.5	72
34	Non-linear associations of 25-hydroxyvitamin D concentrations with risk of cardiovascular disease and all-cause mortality: Results from The Health Improvement Network (THIN) database. Journal of Steroid Biochemistry and Molecular Biology, 2019, 195, 105480.	1.2	17
35	Free versus total serum 25-hydroxyvitamin D in a murine model of colitis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 204-209.	1.2	5
36	A bioinformatics workflow to decipher transcriptomic data from vitamin D studies. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 28-35.	1.2	6

#	Article	IF	CITATIONS
37	Trends in the incidence of testing for vitamin D deficiency in primary care in the UK: a retrospective analysis of The Health Improvement Network (THIN), 2005–2015. BMJ Open, 2019, 9, e028355.	0.8	47
38	The Role of Vitamin D in Inflammatory Bowel Disease: Mechanism to Management. Nutrients, 2019, 11, 1019.	1.7	140
39	Relationship between vitamin D status and the vaginal microbiome during pregnancy. Journal of Perinatology, 2019, 39, 824-836.	0.9	40
40	Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 1-8.	1.2	28
41	Analysis of multiple vitamin D metabolites by ultra-performance supercritical fluid chromatography-tandem mass spectrometry (UPSFC-MS/MS). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1087-1088, 43-48.	1.2	25
42	Brown tumors of primary hyperparathyroidism may be a source of extrarenal 1,25-dihydroxyvitamin D production. Endocrine, 2018, 60, 524-527.	1.1	1
43	Vitamin D-deficiency and sex-specific dysregulation of placental inflammation. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 223-230.	1.2	16
44	Decreased sensitivity to 1,25-dihydroxyvitamin D3 in T cells from the rheumatoid joint. Journal of Autoimmunity, 2018, 88, 50-60.	3.0	23
45	Serum and urine vitamin D metabolite analysis in early preeclampsia. Endocrine Connections, 2018, 7, 199-210.	0.8	12
46	Pathway analysis of transcriptomic data shows immunometabolic effects of vitamin D. Journal of Molecular Endocrinology, 2018, 60, 95-108.	1.1	26
47	Vitamin D, the placenta and early pregnancy: effects on trophoblast function. Journal of Endocrinology, 2018, 236, R93-R103.	1.2	77
48	Intrinsic activation of the vitamin D antimicrobial pathway by M. leprae infection is inhibited by type I IFN. PLoS Neglected Tropical Diseases, 2018, 12, e0006815.	1.3	12
49	Associations Between Change in Total and Free 25-Hydroxyvitamin D With 24,25-Dihydroxyvitamin D and Parathyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3368-3375.	1.8	23
50	Data comparing the separation and elution of vitamin D metabolites on an ultra performance supercritical fluid chromatography tandem-mass spectrometer (UPSFC-MS/MS) compared to liquid chromatography (LC) and data presenting approaches to UPSFC method optimization. Data in Brief, 2018. 20. 426-435.	0.5	0
51	Regulation of Renal and Extrarenal 1α-Hydroxylase. , 2018, , 117-137.		7
52	Vitamin D status and its influence on outcomes following major burn injury and critical illness. Burns and Trauma, 2018, 6, 11.	2.3	23
53	The earlier the better: preconception vitamin D and protection against pregnancy loss. Lancet Diabetes and Endocrinology,the, 2018, 6, 680-681.	5.5	9
54	Automated development of an LC-MS/MS method for measuring multiple vitamin D metabolites using MUSCLE software. Analytical Methods, 2017, 9, 2723-2731.	1.3	8

#	Article	IF	CITATIONS
55	Effects of Cholecalciferol vs Calcifediol on Total and Free 25-Hydroxyvitamin D and Parathyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1133-1140.	1.8	44
56	Effect of vitamin D deficiency in developed countries. British Medical Bulletin, 2017, 122, 79-89.	2.7	18
57	Dysregulation of maternal and placental vitamin D metabolism in preeclampsia. Placenta, 2017, 50, 70-77.	0.7	45
58	Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells. Nucleic Acids Research, 2017, 45, 606-618.	6.5	20
59	Highlights from the 19 th Workshop on Vitamin D in Boston, March 29–31, 2016. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 1-4.	1.2	1
60	25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression. PLoS ONE, 2017, 12, e0170665.	1.1	65
61	DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization. International Journal of Molecular Sciences, 2016, 17, 1984.	1.8	18
62	Differential Responses to Vitamin D2 and Vitamin D3 Are Associated With Variations in Free 25-Hydroxyvitamin D. Endocrinology, 2016, 157, 3420-3430.	1.4	37
63	Effects of High-Dose Vitamin D2 Versus D3 on Total and Free 25-Hydroxyvitamin D and Markers of Calcium Balance. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3070-3078.	1.8	82
64	Use of high-throughput liquid chromatography mass spectrometry to measure association between vitamin D metabolites and body composition and muscle mass: a cross-sectional study. Lancet, The, 2016, 387, S50.	6.3	0
65	Free 25-Hydroxyvitamin D: Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2226-2234.	1.8	145
66	Role of Assay Type in Determining Free 25-Hydroxyvitamin D Levels in Diverse Populations. New England Journal of Medicine, 2016, 374, 1695-1696.	13.9	83
67	Prevalence and treatment of hypovitaminosis D in the haemodialysis population of Coventry. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 214-217.	1.2	1
68	High throughput LC–MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1014, 56-63.	1.2	75
69	Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 132-145.	2.7	65
70	Vitamin D in rheumatoid arthritis—towards clinical application. Nature Reviews Rheumatology, 2016, 12, 201-210.	3.5	78
71	Vitamin D and alternative splicing of RNA. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 310-317.	1.2	20
72	Vitamin D supplementation and antibacterial immune responses in adolescents and young adults with HIV/AIDS. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 290-297.	1.2	32

#	Article	IF	CITATIONS
73	Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Frontiers in Physiology, 2014, 5, 151.	1.3	297
74	IL-32 is a molecular marker of a host defense network in human tuberculosis. Science Translational Medicine, 2014, 6, 250ra114.	5.8	110
75	Regulation of the extrarenal CYP27B1-hydroxylase. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 22-27.	1.2	137
76	Vitamin D and DBP: The free hormone hypothesis revisited. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 132-137.	1.2	354
77	Suppression of Iron-Regulatory Hepcidin by Vitamin D. Journal of the American Society of Nephrology: JASN, 2014, 25, 564-572.	3.0	252
78	Cloning of a functional 25â€hydroxyvitamin Dâ€1αâ€hydroxylase in zebrafish (<i>Danio rerio</i>). Cell Biochemistry and Function, 2014, 32, 675-682.	1.4	5
79	The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1,25-dihydroxyvitamin D-directed transcriptional events in osteoblasts. Bone Research, 2014, 2, .	5.4	20
80	Antibacterial Responses by Peritoneal Macrophages Are Enhanced Following Vitamin D Supplementation. PLoS ONE, 2014, 9, e116530.	1.1	26
81	Vitamin D bioavailability and catabolism in pediatric chronic kidney disease. Pediatric Nephrology, 2013, 28, 1843-1853.	0.9	45
82	Beyond mineral metabolism, is there an interplay between FGF23 and vitamin D in innate immunity?. Pediatric Nephrology, 2013, 28, 577-582.	0.9	25
83	Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes. Journal of Bone and Mineral Research, 2013, 28, 46-55.	3.1	163
84	Type I Interferon Suppresses Type II Interferon–Triggered Human Anti-Mycobacterial Responses. Science, 2013, 339, 1448-1453.	6.0	359
85	Dietary Vitamin D Restriction in Pregnant Female Mice Is Associated With Maternal Hypertension and Altered Placental and Fetal Development. Endocrinology, 2013, 154, 2270-2280.	1.4	71
86	Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts. Journal of Bone and Mineral Research, 2013, 28, 1478-1488.	3.1	72
87	Vitamin D: beyond bone. Annals of the New York Academy of Sciences, 2013, 1287, 45-58.	1.8	249
88	Report of the CCFA Pediatric Bone, Growth and Muscle Health Workshop, New York City, November 11–12, 2011, With Updates. Inflammatory Bowel Diseases, 2013, 19, 2919-2926.	0.9	18
89	Vitamin D and MicroRNAs in Bone. Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 195-214.	0.4	53
90	Down-Regulation of Vitamin D Receptor in Mammospheres: Implications for Vitamin D Resistance in Breast Cancer and Potential for Combination Therapy. PLoS ONE, 2013, 8, e53287.	1.1	39

#	Article	IF	CITATIONS
91	Vitamin D and immune function: an overview. Proceedings of the Nutrition Society, 2012, 71, 50-61.	0.4	304
92	Vitamin D and the Immune System: New Perspectives on an Old Theme. Rheumatic Disease Clinics of North America, 2012, 38, 125-139.	0.8	118
93	Dynamic Development of Glucocorticoid Resistance during Autoimmune Neuroinflammation. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1402-E1410.	1.8	37
94	Vitamin D Binding Protein and Monocyte Response to 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D: Analysis by Mathematical Modeling. PLoS ONE, 2012, 7, e30773.	1.1	86
95	Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells. Arthritis and Rheumatism, 2012, 64, 2404-2413.	6.7	43
96	An update on vitamin D and human immunity. Clinical Endocrinology, 2012, 76, 315-325.	1.2	432
97	Vitamin D and immune function: autocrine, paracrine or endocrine?. Scandinavian Journal of Clinical and Laboratory Investigation, Supplement, 2012, 243, 92-102.	2.7	58
98	Extrarenal CYP27B1 and Vitamin D Physiology. Oxidative Stress and Disease, 2012, , 99-128.	0.3	1
99	Vitamin D. Cell Cycle, 2011, 10, 1888-1889.	1.3	79
100	Vitamin D metabolism and innate immunity. Molecular and Cellular Endocrinology, 2011, 347, 97-105.	1.6	124
101	Antibacterial effects of vitamin D. Nature Reviews Endocrinology, 2011, 7, 337-345.	4.3	320
102	Hormone response element binding proteins: Novel regulators of vitamin D and estrogen signaling. Steroids, 2011, 76, 331-339.	0.8	39
103	Immunomodulation by vitamin D: implications for TB. Expert Review of Clinical Pharmacology, 2011, 4, 583-591.	1.3	40
104	Vitamin D and Innate and Adaptive Immunity. Vitamins and Hormones, 2011, 86, 23-62.	0.7	186
105	Vitamin D and the Regulation of Placental Inflammation. Journal of Immunology, 2011, 186, 5968-5974.	0.4	168
106	Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB Journal, 2011, 25, 937-947.	0.2	102
107	Vitamin D Is Required for IFN-γ–Mediated Antimicrobial Activity of Human Macrophages. Science Translational Medicine, 2011, 3, 104ra102.	5.8	442
108	VITAMIN D AND HUMAN PREGNANCY. Fetal and Maternal Medicine Review, 2011, 22, 67-90.	0.3	11

#	Article	IF	CITATIONS
109	Extrarenal 1α-Hydroxylase. , 2011, , 777-804.		13
110	Vitamin D, Immunity and Human Disease. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 32-39.	1.3	5
111	Vitamin D insufficiency and skeletal development in utero. Journal of Bone and Mineral Research, 2010, 25, 11-13.	3.1	23
112	Dietary Vitamin D Intake in Advanced CKD/ESRD. Seminars in Dialysis, 2010, 23, 407-410.	0.7	7
113	T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22593-22598.	3.3	206
114	Update in Vitamin D. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 471-478.	1.8	793
115	A Role for Vitamin D in Placental Immunology. Journal of Infectious Diseases, 2010, 201, 1950-1951.	1.9	7
116	Vitamin D Deficiency in Mice Impairs Colonic Antibacterial Activity and Predisposes to Colitis. Endocrinology, 2010, 151, 2423-2432.	1.4	218
117	Rare Causes of Calcitriol-Mediated Hypercalcemia: A Case Report and Literature Review. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3111-3117.	1.8	97
118	Vitamin D-Binding Protein Directs Monocyte Responses to 25-Hydroxy- and 1,25-Dihydroxyvitamin D. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3368-3376.	1.8	204
119	Ligand Regulation and Nuclear Receptor Action. , 2010, , 381-417.		1
120	1α-Hydroxylase and innate immune responses to 25-hydroxyvitamin D in colonic cell lines. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 228-233.	1.2	37
121	Vitamin D and the intracrinology of innate immunity. Molecular and Cellular Endocrinology, 2010, 321, 103-111.	1.6	193
122	Vitamin D and the Immune System: New Perspectives on an Old Theme. Endocrinology and Metabolism Clinics of North America, 2010, 39, 365-379.	1.2	406
123	Vitamin D and the Innate Immunity. , 2010, , 297-310.		2
124	Vitamin D Deficiency Modulates Graves' Hyperthyroidism Induced in BALB/c Mice by Thyrotropin Receptor Immunization. Endocrinology, 2009, 150, 1051-1060.	1.4	70
125	Vitamin D-Directed Rheostatic Regulation of Monocyte Antibacterial Responses. Journal of Immunology, 2009, 182, 4289-4295.	0.4	349
126	1,25-Dihydroxyvitamin D3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3. Journal of Immunology, 2009, 183, 5458-5467.	0.4	666

#	Article	IF	CITATIONS
127	Vitamin D and Innate Immunity. Clinical Reviews in Bone and Mineral Metabolism, 2009, 7, 176-184.	1.3	1
128	1α,25-dihydroxyvitamin D3 Interacts with Curcuminoids to Stimulate Amyloid-β Clearance by Macrophages of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2009, 17, 703-717.	1.2	190
129	Divergence of Macrophage Phagocytic and Antimicrobial Programs in Leprosy. Cell Host and Microbe, 2009, 6, 343-353.	5.1	175
130	Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 80-90.	2.9	647
131	Reduction of the vitamin D hormonal system in kidney disease is associated with increased renal inflammation. Kidney International, 2008, 74, 1343-1353.	2.6	115
132	Back to the future: a new look at â€~old' vitamin D. Journal of Endocrinology, 2008, 198, 261-269.	1.2	77
133	IL-15 Links TLR2/1-Induced Macrophage Differentiation to the Vitamin D-Dependent Antimicrobial Pathway. Journal of Immunology, 2008, 181, 7115-7120.	0.4	205
134	Altered Endocrine and Autocrine Metabolism of Vitamin D in a Mouse Model of Gastrointestinal Inflammation. Endocrinology, 2008, 149, 4799-4808.	1.4	143
135	Control of Estradiol-Directed Gene Transactivation by an Intracellular Estrogen-Binding Protein and an Estrogen Response Element-Binding Protein. Molecular Endocrinology, 2008, 22, 559-569.	3.7	25
136	Vitamin D–Mediated Hypercalcemia and Cushing Syndrome as Manifestations of Malignant Pleural Mesothelioma. Endocrine Practice, 2008, 14, 1011-1016.	1.1	5
137	Vitamin D and innate immunity. Current Opinion in Investigational Drugs, 2008, 9, 485-90.	2.3	45
138	Glucocorticoid-induced apoptosis in human decidua: a novel role for $11^{\hat{l}2}$ -hydroxysteroid dehydrogenase in late gestation. Journal of Endocrinology, 2007, 195, 7-15.	1.2	28
139	Extra-renal 25-hydroxyvitamin D3-1α-hydroxylase in human health and disease. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 316-321.	1.2	359
140	Vitamin D in Defense of the Human Immune Response. Annals of the New York Academy of Sciences, 2007, 1117, 94-105.	1.8	140
141	Differential expression, function and response to inflammatory stimuli of 11beta-hydroxysteroid dehydrogenase type 1 in human fibroblasts: a mechanism for tissue-specific regulation of inflammation. Arthritis Research and Therapy, 2006, 8, R108.	1.6	79
142	Toll-Like Receptor Triggering of a Vitamin D-Mediated Human Antimicrobial Response. Science, 2006, 311, 1770-1773.	6.0	3,367
143	Vitamin D-Mediated Hypercalcemia in Slack Skin Disease: Evidence for Involvement of Extrarenal 25-Hydroxyvitamin D 11±-Hydroxylase. Journal of Bone and Mineral Research, 2006, 21, 1496-1499.	3.1	36
144	Effects of 25-Hydroxyvitamin D3 and 1,25-Dihydroxyvitamin D3 on Cytokine Production by Human Decidual Cells1. Biology of Reproduction, 2006, 75, 816-822.	1.2	202

#	Article	IF	CITATIONS
145	Functional Characterization of Heterogeneous Nuclear Ribonuclear Protein C1/C2 in Vitamin D Resistance. Journal of Biological Chemistry, 2006, 281, 39114-39120.	1.6	48
146	Androgen Receptor–Mediated Regulation of the α-Subunit of the Epithelial Sodium Channel in Human Kidney. Hypertension, 2005, 46, 787-798.	1.3	63
147	Alternative Splicing of Vitamin D-24-Hydroxylase. Journal of Biological Chemistry, 2005, 280, 20604-20611.	1.6	109
148	Increased Expression of Mineralocorticoid Effector Mechanisms in Kidney Biopsies of Patients With Heavy Proteinuria. Circulation, 2005, 112, 1435-1443.	1.6	121
149	19-Nor-1,25(OH)2D2 (a Novel, Noncalcemic Vitamin D Analogue), Combined with Arsenic Trioxide, Has Potent Antitumor Activity against Myeloid Leukemia. Cancer Research, 2005, 65, 2488-2497.	0.4	39
150	Autocrine Metabolism of Vitamin D in Normal and Malignant Breast Tissue. Clinical Cancer Research, 2005, 11, 3579-3586.	3.2	167
151	Extra-renal 1α-Hydroxylase Activity and Human Disease. , 2005, , 1379-1400.		16
152	Expression of renal 11β-hydroxysteroid dehydrogenase type 2 is decreased in patients with impaired renal function. European Journal of Endocrinology, 2005, 153, 291-299.	1.9	41
153	Distribution of the Vitamin D receptor and 1α-hydroxylase in human brain. Journal of Chemical Neuroanatomy, 2005, 29, 21-30.	1.0	1,208
154	Biological actions of extra-renal 25-hydroxyvitamin D-1α-hydroxylase and implications for chemoprevention and treatment. Journal of Steroid Biochemistry and Molecular Biology, 2005, 97, 103-109.	1.2	143
155	An Hsp27-related, Dominant-negative-acting Intracellular Estradiol-binding Protein. Journal of Biological Chemistry, 2004, 279, 29944-29951.	1.6	13
156	Hormones and immune function: implications of aging. Aging Cell, 2004, 3, 209-216.	3.0	88
157	Vitamin D and Placental-Decidual Function. Journal of the Society for Gynecologic Investigation, 2004, 11, 263-271.	1.9	286
158	Increased Expression of 25-Hydroxyvitamin D-1α-Hydroxylase in Dysgerminomas. American Journal of Pathology, 2004, 165, 807-813.	1.9	77
159	Vitamin D and barrier function: a novel role for extra-renal 1α-hydroxylase. Molecular and Cellular Endocrinology, 2004, 215, 31-38.	1.6	190
160	Mechanisms of decreased Vitamin D 1α-hydroxylase activity in prostate cancer cells. Molecular and Cellular Endocrinology, 2004, 221, 67-74.	1.6	40
161	Expression of 25-hydroxyvitamin D3-1α-hydroxylase in pancreatic islets. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 121-125.	1.2	296
162	11β-Hydroxysteroid Dehydrogenase Type 1: A Tissue-Specific Regulator of Glucocorticoid Response. Endocrine Reviews, 2004, 25, 831-866.	8.9	897

#	Article	IF	CITATIONS
163	Vitamin D-Mediated Hypercalcemia in Lymphoma: Evidence for Hormone Production by Tumor-Adjacent Macrophages. Journal of Bone and Mineral Research, 2003, 18, 579-582.	3.1	118
164	Mutations in the genes encoding 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nature Genetics, 2003, 34, 434-439.	9.4	276
165	Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: A cause of vitamin D resistance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6109-6114.	3.3	125
166	Late-Onset Apparent Mineralocorticoid Excess Caused by Novel Compound Heterozygous Mutations in the HSD11B2 Gene. Hypertension, 2003, 42, 123-129.	1.3	57
167	Differential Regulation of Vitamin D Receptor and Its Ligand in Human Monocyte-Derived Dendritic Cells. Journal of Immunology, 2003, 170, 5382-5390.	0.4	407
168	11β-Hydroxysteroid Dehydrogenase Type 1 Activity Predicts the Effects of Glucocorticoids on Bone. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3874-3877.	1.8	89
169	Serum- and Glucocorticoid-Regulated Kinase Isoform-1 and Epithelial Sodium Channel Subunits in Human Ocular Ciliary Epithelium. , 2003, 44, 1643.		20
170	The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Research, 2003, 63, 505-12.	0.4	117
171	25-Hydroxyvitamin D ₃ -1α-Hydroxylase Expression in Normal and Pathological Parathyroid Glands. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2967-2972.	1.8	169
172	Association studies between the HSD11B2 gene (encoding human 11beta-hydroxysteroid dehydrogenase) Tj ETO	Qq0 0 0 rg 1.9	gBT /Overlock 14
173	The Ontogeny of 25-Hydroxyvitamin D3 1α-Hydroxylase Expression in Human Placenta and Decidua. American Journal of Pathology, 2002, 161, 105-114.	1.9	201
174	Prereceptor regulation of glucocorticoid action by 11βâ€hydroxysteroid dehydrogenase: a novel determinant of cell proliferation. FASEB Journal, 2002, 16, 36-44.	0.2	84
175	11Î ² -HYDROXYSTEROID DEHYDROGENASE TYPE 1 IN DIFFERENTIATING OMENTAL HUMAN PREADIPOCYTES: FROM DE-ACTIVATION TO GENERATION OF CORTISOL. Endocrine Research, 2002, 28, 449-461.	0.6	64
176	Osteoblastic 11β-Hydroxysteroid Dehydrogenase Type 1 Activity Increases With Age and Glucocorticoid Exposure. Journal of Bone and Mineral Research, 2002, 17, 979-986.	3.1	181
177	Synthesis of 1,25-Dihydroxyvitamin D3 by Human Endothelial Cells Is Regulated by Inflammatory Cytokines. Journal of the American Society of Nephrology: JASN, 2002, 13, 621-629.	3.0	285
178	Regulation of vitamin D-1α-hydroxylase in a human cortical collecting duct cell line. Kidney International, 2001, 60, 1277-1286.	2.6	46
179	Expression of 11?-hydroxysteroid dehydrogenase in rat osteoblastic cells: Pre-receptor regulation of glucocorticoid responses in bone. Journal of Cellular Biochemistry, 2001, 81, 453-462.	1.2	34
180	Modulation of 11βâ€Hydroxysteroid Dehydrogenase Isozymes by Proinflammatory Cytokines in Osteoblasts: An Autocrine Switch from Glucocorticoid Inactivation to Activation. Journal of Bone and Mineral Research, 2001, 16, 1037-1044.	3.1	211

#	Article	IF	CITATIONS
181	Vitamin D as a cytokine and hematopoetic factor. Reviews in Endocrine and Metabolic Disorders, 2001, 2, 217-227.	2.6	48
182	Extrarenal Expression of 25-Hydroxyvitamin D ₃ -1α-Hydroxylase ¹ . Journal of Clinical Endocrinology and Metabolism, 2001, 86, 888-894.	1.8	728
183	Expression of 25-hydroxyvitamin D3-1α-hydroxylase along the nephron: new insights into renal vitamin D metabolism. Current Opinion in Nephrology and Hypertension, 2000, 9, 17-22.	1.0	39
184	Constitutive Expression of 25-Hydroxyvitamin D3-1α-Hydroxylase in a Transformed Human Proximal Tubule Cell Line: Evidence for Direct Regulation of Vitamin D Metabolism by Calcium*. Endocrinology, 1999, 140, 2027-2034.	1.4	123
185	Differentiation of Adipose Stromal Cells: The Roles of Glucocorticoids and 11β-Hydroxysteroid Dehydrogenase*. Endocrinology, 1999, 140, 3188-3196.	1.4	242
186	Loss of Estrogen Inactivation in Colonic Cancer. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2080-2085.	1.8	72
187	Estrone potentiates myeloid cell differentiation. Experimental Hematology, 1999, 27, 451-460.	0.2	24
188	The renal function of 25-hydroxyvitamin D3-1α-hydroxylase. Molecular and Cellular Endocrinology, 1999, 151, 213-220.	1.6	43
189	Expression of 25-Hydroxyvitamin D3-1α-Hydroxylase in the Human Kidney. Journal of the American Society of Nephrology: JASN, 1999, 10, 2465-2473.	3.0	167
190	Characterization of Aromatase and 17β-Hydroxysteroid Dehydrogenase Expression in Rat Osteoblastic Cells. Journal of Bone and Mineral Research, 1998, 13, 996-1004.	3.1	45
191	Differential RNA display identifies novel genes associated with decreased vitamin D receptor expression1The work in this paper was funded by various grants: M.D., Polish State Committee for Scientific Research Grant No. 4P05A08709; E.R., West Midlands Regional Health Authority; R.B., Medical Research Council Grant No. G9517674.1. Molecular and Cellular Endocrinology, 1998, 142, 131-139.	1.6	7
192	Mutations in the Vitamin D Receptor Gene in Three Kindreds Associated with Hereditary Vitamin D Resistant Rickets. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3156-3160.	1.8	60
193	Tumor-induced osteomalacia. Current Opinion in Rheumatology, 1994, 6, 340-344.	2.0	9
194	Differential Expression of Nuclear 11β-Hydroxysteroid Dehydrogenase Type 2 in Mineralocorticoid Receptor Positive and Negative Tissues. , 0, .		10
195	1,25-Dihydroxyvitamin D3 Regulates Estrogen Metabolism in Cultured Keratinocytes. , 0, .		14
196	Loss of Estrogen Inactivation in Colonic Cancer. , 0, .		26
197	<pre><scp>UK</scp> Nutrition Research Partnership â€~Hot Topic' workshop: Vitamin D—A multiâ€disciplinary approach to (1) elucidate its role in human health and (2) develop strategies to improve vitamin D status in the <scp>UK</scp> population. Nutrition Bulletin, 0, , .</pre>	0.8	3