
Simon Thorn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3861881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
2	Impacts of salvage logging on biodiversity: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 279-289.	1.9	252
3	Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biological Conservation, 2015, 191, 139-149.	1.9	218
4	Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conservation Biology, 2015, 29, 382-390.	2.4	201
5	Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. Journal of Applied Ecology, 2016, 53, 934-943.	1.9	194
6	A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecology and Management, 2017, 388, 120-131.	1.4	172
7	Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 2020, 35, 292-314.	0.7	141
8	Bark Beetles Increase Biodiversity While Maintaining Drinking Water Quality. Conservation Letters, 2015, 8, 272-281.	2.8	140
9	The Necessity of Multitrophic Approaches in Community Ecology. Trends in Ecology and Evolution, 2018, 33, 754-764.	4.2	105
10	Salvage logging in the world's forests: Interactions between natural disturbance and logging need recognition. Global Ecology and Biogeography, 2018, 27, 1140-1154.	2.7	97
11	"Primeval forest relict beetles―of Central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. Journal of Insect Conservation, 2018, 22, 15-28.	0.8	86
12	Effects of natural disturbances and salvage logging on biodiversity – Lessons from the Bohemian Forest. Forest Ecology and Management, 2017, 388, 113-119.	1.4	85
13	The living dead: acknowledging life after tree death to stop forest degradation. Frontiers in Ecology and the Environment, 2020, 18, 505-512.	1.9	84
14	Increasing disturbance demands new policies to conserve intact forest. Conservation Letters, 2019, 12, e12449.	2.8	81
15	An attributeâ€diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecological Monographs, 2019, 89, e01343.	2.4	80
16	Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology and Evolution, 2020, 4, 1204-1212.	3.4	76
17	An experimental test of the habitatâ€amount hypothesis for saproxylic beetles in a forested region. Ecology, 2017, 98, 1613-1622.	1.5	75
18	Salvage logging effects on regulating and supporting ecosystem services — a systematic map. Canadian Journal of Forest Research, 2018, 48, 983-1000.	0.8	74

#	Article	IF	CITATIONS
19	Please do not disturb ecosystems further. Nature Ecology and Evolution, 2017, 1, 31.	3.4	72
20	Radar vision in the mapping of forest biodiversity from space. Nature Communications, 2019, 10, 4757.	5.8	66
21	Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 2020, 129, 1579-1588.	1.2	63
22	New Insights into the Consequences of Post-Windthrow Salvage Logging Revealed by Functional Structure of Saproxylic Beetles Assemblages. PLoS ONE, 2014, 9, e101757.	1.1	62
23	Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biological Conservation, 2016, 204, 181-188.	1.9	61
24	Changes in the dominant assembly mechanism drive species loss caused by declining resources. Ecology Letters, 2016, 19, 163-170.	3.0	60
25	Estimating retention benchmarks for salvage logging to protect biodiversity. Nature Communications, 2020, 11, 4762.	5.8	54
26	Tamm review: Does salvage logging mitigate subsequent forest disturbances?. Forest Ecology and Management, 2021, 481, 118721.	1.4	50
27	Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecological Indicators, 2016, 65, 149-160.	2.6	48
28	Salvage logging effects on regulating ecosystem services and fuel loads. Frontiers in Ecology and the Environment, 2020, 18, 391-400.	1.9	45
29	Retention forestry and prescribed burning result in functionally different saproxylic beetle assemblages than clear-cutting. Forest Ecology and Management, 2016, 359, 51-58.	1.4	43
30	Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. Forest Ecology and Management, 2018, 409, 564-570.	1.4	41
31	Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach. Journal of Applied Ecology, 2020, 57, 2075-2085.	1.9	39
32	Bark-scratching of storm-felled trees preserves biodiversity at lower economic costs compared to debarking. Forest Ecology and Management, 2016, 364, 10-16.	1.4	36
33	Response of bird assemblages to windstorm and salvage logging — Insights from analyses of functional guild and indicator species. Ecological Indicators, 2016, 65, 142-148.	2.6	36
34	Historical Disturbances Determine Current Taxonomic, Functional and Phylogenetic Diversity of Saproxylic Beetle Communities in Temperate Primary Forests. Ecosystems, 2021, 24, 37-55.	1.6	35
35	Guild-specific responses of forest Lepidoptera highlight conservation-oriented forest management – Implications from conifer-dominated forests. Forest Ecology and Management, 2015, 337, 41-47.	1.4	34
36	Canopy closure determines arthropod assemblages in microhabitats created by windstorms and salvage logging. Forest Ecology and Management, 2016, 381, 188-195.	1.4	32

#	Article	IF	CITATIONS
37	LiDARâ€derived canopy structure supports the moreâ€individuals hypothesis for arthropod diversity in temperate forests. Oikos, 2018, 127, 814-824.	1.2	31
38	Land use at different spatial scales alters the functional role of web-building spiders in arthropod food webs. Agriculture, Ecosystems and Environment, 2016, 219, 152-162.	2.5	28
39	Forest structure following natural disturbances and early succession provides habitat for two avian flagship species, capercaillie (Tetrao urogallus) and hazel grouse (Tetrastes bonasia). Biological Conservation, 2018, 226, 81-91.	1.9	28
40	Diversity and conservation of saproxylic beetles in 42 European tree species: an experimental approach using early successional stages of branches. Insect Conservation and Diversity, 2021, 14, 132-143.	1.4	28
41	Tradeâ€offs in arthropod conservation between productive and nonâ€productive agriâ€environmental schemes along a landscape complexity gradient. Insect Conservation and Diversity, 2017, 10, 236-247.	1.4	27
42	Influence of macroclimate and local conservation measures on taxonomic, functional, and phylogenetic diversities of saproxylic beetles and wood-inhabiting fungi. Biodiversity and Conservation, 2018, 27, 3119-3135.	1.2	27
43	Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Animal Conservation, 2018, 21, 21-30.	1.5	26
44	Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology, 2020, 101, e02949.	1.5	26
45	Bridging science and practice in conservation: Deficits and challenges from a research perspective. Basic and Applied Ecology, 2017, 24, 1-8.	1.2	25
46	Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sensing of Environment, 2018, 215, 145-156.	4.6	25
47	Preventing European forest diebacks. Science, 2019, 365, 1388-1388.	6.0	25
48	Wood resource and not fungi attract earlyâ€successional saproxylic species of <i>Heteroptera –</i> an experimental approach. Insect Conservation and Diversity, 2014, 7, 533-542.	1.4	24
49	The Red-belted Bracket (Fomitopsis pinicola) colonizes spruce trees early after bark beetle attack and persists. Fungal Ecology, 2017, 27, 182-188.	0.7	24
50	Reconciling pest control, nature conservation, and recreation in coniferous forests. Conservation Letters, 2019, 12, e12615.	2.8	23
51	Decadal effects of landscapeâ€wide enrichment of dead wood on saproxylic organisms in beech forests of different historic management intensity. Diversity and Distributions, 2019, 25, 430-441.	1.9	23
52	Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. Journal of Applied Ecology, 2020, 57, 1103-1112.	1.9	23
53	What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database. Journal of Animal Ecology, 2021, 90, 1934-1947.	1.3	23
54	Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191744.	1.2	22

#	Article	IF	CITATIONS
55	Longâ€ŧerm monitoring reveals decreasing water beetle diversity, loss of specialists and community shifts over the past 28 years. Insect Conservation and Diversity, 2020, 13, 140-150.	1.4	21
56	Host abundance, durability, basidiome form and phylogenetic isolation determine fungivore species richness. Biological Journal of the Linnean Society, 2015, 114, 699-708.	0.7	20
57	Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests. Ecography, 2021, 44, 941-952.	2.1	20
58	Countering resistance to protectedâ \in area extension. Conservation Biology, 2018, 32, 315-321.	2.4	19
59	"Trees Live on Soil and Sunshine!― Coexistence of Scientific and Alternative Conception of Tree Assimilation. PLoS ONE, 2016, 11, e0147802.	1.1	18
60	Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Diversity and Distributions, 2019, 25, 783-796.	1.9	18
61	Congruent patterns of functional diversity in saproxylic beetles and fungi across European beech forests. Journal of Biogeography, 2019, 46, 1054-1065.	1.4	18
62	Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats. Scientific Reports, 2020, 10, 1520.	1.6	18
63	Restorationâ€oriented forest management affects community assembly patterns of deadwoodâ€dependent organisms. Journal of Applied Ecology, 2020, 57, 2429-2440.	1.9	17
64	Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. Forest Ecology and Management, 2021, 482, 118811.	1.4	15
65	Protect Iran's ancient forest from logging. Science, 2017, 355, 919-919.	6.0	13
66	Testing the usefulness of hydrogen and compound-specific stable isotope analyses in seabird feathers: a case study in two sympatric Antarctic storm-petrels. Marine Biology, 2017, 164, 1.	0.7	13
67	Resilience impacts of a secondary disturbance: Metaâ€analysis of salvage logging effects on tree regeneration. Journal of Ecology, 2021, 109, 3224-3232.	1.9	12
68	Environmental policies to cope with novel disturbance regimes–steps to address a world scientists' warning to humanity. Environmental Research Letters, 2021, 16, 021003.	2.2	12
69	Proportional mixture of two rarefaction/extrapolation curves to forecast biodiversity changes under landscape transformation. Ecology Letters, 2019, 22, 1913-1922.	3.0	11
70	Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations. Ecological Applications, 2022, 32, e2516.	1.8	10
71	Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Communications Biology, 2022, 5, 57.	2.0	9
72	Natural regeneration determines wintering bird presence in wind-damaged coniferous forest stands independent of postdisturbance logging. Canadian Journal of Forest Research, 2015, 45, 1232-1237.	0.8	7

#	Article	IF	CITATIONS
73	The diversity of saproxylic insects (Coleoptera, Heteroptera) on four tree species of the Hyrcanian forest in Iran. Journal of Insect Conservation, 2018, 22, 607-625.	0.8	7
74	Predicting regional hotspots of phylogenetic diversity across multiple species groups. Diversity and Distributions, 2020, 26, 1305-1314.	1.9	7
75	Education and knowledge determine preference for bark beetle control measures in El Salvador. Journal of Environmental Management, 2019, 232, 138-144.	3.8	6
76	Surface temperature and shrub cover drive ground beetle (Coleoptera: Carabidae) assemblages in shortâ€rotation coppices. Agricultural and Forest Entomology, 2021, 23, 400-410.	0.7	6
77	A replicated study on the response of spider assemblages to regional and local processes. Ecological Monographs, 2022, 92, .	2.4	6
78	Wildfire debate needs science, not politics. Science, 2020, 370, 416-417.	6.0	4
79	Abundance, not diversity, of host beetle communities determines abundance and diversity of parasitoids in deadwood. Ecology and Evolution, 2021, 11, 6881-6888.	0.8	3
80	A new species of Pherbellia (Diptera: Sciomyzidae) from Iran. Zootaxa, 2020, 4772, zootaxa.4772.2.7.	0.2	2
81	Coppicing and topsoil removal promote diversity of dungâ€inhabiting beetles (Coleoptera: Scarabaeidae,) Tj ETQ	9110.78	4314 rgBT

82 Evaluating the importance of managed forests as habitat for the Semi-collared Flycatcher (Ficedula) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5