
Xiaolan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3861666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On Topological Analysis of Graphite Carbon Nitride via Degree Based Coindices. Polycyclic Aromatic Compounds, 2022, 42, 2777-2788.	2.6	5
2	Visible-light-promoted catalyst-/additive-free synthesis of aroylated heterocycles in a sustainable solvent. Green Chemistry, 2022, 24, 1732-1737.	9.0	36
3	Ce(III)/Photoassisted Synthesis of Amides from Carboxylic Acids and Isocyanates. Organic Letters, 2022, 24, 2431-2435.	4.6	17
4	Direct benzylation reactions from benzyl halides enabled by transition-metal-free photocatalysis. Chinese Chemical Letters, 2022, 33, 5074-5079.	9.0	33
5	Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp ³)–H Bonds. ACS Catalysis, 2022, 12, 126-134.	11.2	43
6	Perovskite as Recyclable Photocatalyst for Annulation Reaction of <i>N</i> -Sulfonyl Ketimines. Organic Letters, 2022, 24, 299-303.	4.6	40
7	Visible-light-induced cyclization of cyclic <i>N</i> -sulfonyl ketimines to <i>N</i> -sulfonamide fused imidazolidines. Organic and Biomolecular Chemistry, 2022, 20, 3798-3802.	2.8	10
8	A general electron donor–acceptor complex for photoactivation of arenes <i>via</i> thianthrenation. Chemical Science, 2022, 13, 5659-5666.	7.4	65
9	1-Acryloyl-2-cyanoindole: A Skeleton for Visible-Light-Induced Cascade Annulation. Organic Letters, 2022, 24, 3014-3018.	4.6	25
10	Photoexcited sulfenylation of C(sp ³)–H bonds in amides using thiosulfonates. Organic and Biomolecular Chemistry, 2022, 20, 3902-3906.	2.8	4
11	Switchable aroylation and diaroylation of allyl sulfones with aldehydes enabled by decatungstate photocatalysis. Green Chemistry, 2022, 24, 5614-5619.	9.0	18
12	Recent advances in visible-light-mediated organic transformations in water. Green Chemistry, 2021, 23, 232-248.	9.0	119
13	Visible-light-induced metal-free cascade cyclization of <i>N</i> -arylpropiolamides to 3-phosphorylated, trifluoromethylated and thiocyanated azaspiro[4.5]trienones. Organic Chemistry Frontiers, 2021, 8, 760-766.	4.5	50
14	An amino-substituted 2-(2′-hydroxyphenyl)benzimidazole for the fluorescent detection of phosgene based on an ESIPT mechanism. RSC Advances, 2021, 11, 10836-10841.	3.6	26
15	Acyl Radicals from α-Keto Acids: Metal-Free Visible-Light-Promoted Acylation of Heterocycles. Organic Letters, 2021, 23, 2976-2980.	4.6	96
16	Driving Click Reactions with Plasmonic Hot Holes on (Au Core)@(Cu ₂ O Shell) Nanostructures for Regioselective Production of 1,2,3-Triazoles. ACS Applied Nano Materials, 2021, 4, 4623-4631.	5.0	12
17	Recent Advances of Calcium Carbide in Organic Reactions. Current Chinese Chemistry, 2021, 1, 3-10.	0.4	1
18	Metal-Free Photosynthesis of Alkylated Benzimidazo[2,1- <i>a</i>]isoquinoline-6(5 <i>H</i>)-ones and Indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones in PEG-200. Journal of Organic Chemistry, 2021, 86, 9055-9066.	3.2	50

#	Article	IF	CITATIONS
19	Visible light-induced recyclable g-C ₃ N ₄ catalyzed thiocyanation of C(sp ²)–H bonds in sustainable solvents. Green Chemistry, 2021, 23, 3677-3682.	9.0	96
20	Visible-light-promoted synthesis of secondary and tertiary thiocarbamates from thiosulfonates and <i>N</i> -substituted formamides. Organic and Biomolecular Chemistry, 2021, 19, 8701-8705.	2.8	9
21	4CzIPN- ^{<i>t</i>} Bu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated <i>N</i> -Heteroaromatics. Journal of the American Chemical Society, 2021, 143, 964-972.	13.7	135
22	Advances of <i>N</i> -Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 4661.	1.3	34
23	Application of <i>α</i> -Keto Acids in Metal-Free Photocatalysis. Chinese Journal of Organic Chemistry, 2021, 41, 4575.	1.3	21
24	Visibleâ€Lightâ€Induced Metalâ€Free Synthesis of 2â€Phosphorylated Thioflavones in Water. ChemSusChem, 2020, 13, 298-303.	6.8	54
25	Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazoâ€Fused Heterocycles. Advanced Synthesis and Catalysis, 2020, 362, 2143-2149.	4.3	65
26	Visible-light-promoted oxidative decarboxylation of arylacetic acids in air: Metal-free synthesis of aldehydes and ketones at room temperature. Chinese Chemical Letters, 2020, 31, 1863-1867.	9.0	59
27	A Type of Atypical AIEgen Used for One-Photon/Two-Photon Targeted Imaging in Live Cells. ACS Applied Bio Materials, 2020, 3, 505-511.	4.6	16
28	Mn(III)â€Mediated Regioselective 6â€ <i>endo</i> â€ŧrig Radical Cyclization of <i>o</i> â€Vinylaryl Isocyanides to Access 2â€Functionalized Quinolines. Advanced Synthesis and Catalysis, 2020, 362, 688-694.	4.3	55
29	Divergent g-C3N4-catalyzed Reactions of Quinoxalin-2(1H)-ones with N-Aryl Glycines under Visible Light: Solvent-Controlled Hydroaminomethylation and Annulation. ACS Sustainable Chemistry and Engineering, 2020, , .	6.7	13
30	Simultaneous Detection of Human Serum Albumin and Sulfur Dioxide in Living Cells Based on a Catalyzed Michael Addition Reaction. Analytical Chemistry, 2020, 92, 16130-16137.	6.5	51
31	A Practical Synthesis of 1â€Azineâ€pyridinâ€2(1H)â€ones from Azine <i>N</i> â€oxides and Pyridinâ€2(1H)â€one Mild Reaction Conditions. ChemistrySelect, 2020, 5, 14320-14323.	es under	1
32	Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. Journal of Organic Chemistry, 2020, 85, 14744-14752.	3.2	29
33	Arylaminomethyl Radical-Initiated Cascade Annulation Reaction of Quinoxalin-2(1 <i>H</i>)-ones Catalyzed by Recyclable Photocatalyst Perovskite. Organic Letters, 2020, 22, 6960-6965.	4.6	52
34	A metal-free visible-light-promoted phosphorylation/cyclization reaction in water towards 3-phosphorylated benzothiophenes. Organic Chemistry Frontiers, 2020, 7, 1884-1889.	4.5	40
35	6ï€-Electrocyclization in water: microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chemistry, 2020, 22, 4445-4449.	9.0	58
36	Synthesis of 2-phenoxyl-2-oxo-1,4,2-oxazaphosphinanes from a three component reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 359-366.	1.6	3

#	Article	IF	CITATIONS
37	Recyclable Cu@C ₃ N ₄ -Catalyzed Hydroxylation of Aryl Boronic Acids in Water under Visible Light: Synthesis of Phenols under Ambient Conditions and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 2682-2687.	6.7	57
38	Visible-light-promoted organic dye-catalyzed sulfidation and phosphorylation of arylhydrazines toward aromatic sulfides and diarylphosphoryl hydrazides. New Journal of Chemistry, 2019, 43, 13642-13646.	2.8	24
39	Silver-mediated radical phosphorylation/cyclization of <i>N</i> -allylbenzamides to access phosphoryl-substituted dihydroisoquinolones. New Journal of Chemistry, 2019, 43, 12221-12224.	2.8	20
40	Silver atalyzed Radical Cascade Cyclization of Unactivated Alkenes towards Cyclopenta[c]quinolines. Advanced Synthesis and Catalysis, 2019, 361, 4483-4488.	4.3	36
41	Metalâ€Free Visibleâ€Light Promoted Radical Cyclization to Access Perfluoroalkylâ€Substituted Benzimidazo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H</i>)â€ones and Indolo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H<td>4.3 1.</td><td>87</td></i>	4.3 1.	87
42	Synthesis of Phosphorylâ€Substituted Benzimidazo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H</i>)â€ones from 2â€Arylbenzoimidazoles and Diarylphosphine Oxides. Asian Journal of Organic Chemistry, 2019, 8, 2042-2045.	2.7	26
43	Airâ€Induced Oneâ€Pot Synthesis of <i>N</i> â€Sulfonylformamidines from Sulfonyl Chlorides, NaN ₃ , and Tertiary/Secondary Amines. European Journal of Organic Chemistry, 2019, 2019, 6071-6076.	2.4	12
44	Visibleâ€Lightâ€Promoted Transitionâ€Metalâ€Free Approach toward Phosphorylâ€Substituted Dihydroisoquinolones via Cascade Phosphorylation/Cyclization of N â€Allylbenzamides. Advanced Synthesis and Catalysis, 2019, 361, 3712-3717.	4.3	61
45	Visible-Light Induced Radical Perfluoroalkylation/Cyclization Strategy To Access 2-Perfluoroalkylbenzothiazoles/Benzoselenazoles by EDA Complex. Organic Letters, 2019, 21, 4019-4024.	4.6	121
46	An External-Catalyst-Free Trifluoromethylation/Cyclization Strategy To Access Trifluoromethylated-Dihydroisoquinolinones/Indolines with Togni Reagent II. Organic Letters, 2019, 21, 1863-1867.	4.6	38
47	Recent applications of radical cascade reaction in the synthesis of functionalized 1-indenones. Chinese Chemical Letters, 2019, 30, 1361-1368.	9.0	75
48	Copper-catalyzed one-pot three-component thioamination of 1,4-naphthoquinone. Organic Chemistry Frontiers, 2019, 6, 1476-1480.	4.5	64
49	Metal-free sulfonyl radical-initiated cascade cyclization to access sulfonated indolo[1,2- <i>a</i>)quinolines. Chemical Communications, 2019, 55, 12615-12618.	4.1	59
50	Temperature-dependent synthesis of vinyl sulfones and β-hydroxy sulfones from <i>t</i> -butylsulfinamide and alkenes under aerobic conditions. New Journal of Chemistry, 2019, 43, 17941-17945.	2.8	5
51	Copper-Catalyzed C4-H Regioselective Phosphorylation/Trifluoromethylation of Free 1-Naphthylamines. Organic Letters, 2019, 21, 486-489.	4.6	56
52	Applications of <i>H</i> -phosphonates for C element bond formation. Pure and Applied Chemistry, 2019, 91, 33-41.	1.9	47
53	Silver-catalyzed decarboxylative radical cascade cyclization toward benzimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Chemical Communications, 2019, 55, 2861-2864.	4.1	114
54	Mechanism of Phosphineâ€Catalyzed Allene Coupling Reactions: Advances in Theoretical Investigations. Chemistry - an Asian Journal, 2018, 13, 1076-1088.	3.3	26

#	Article	IF	CITATIONS
55	A Visibleâ€Lightâ€Promoted Metalâ€Free Strategy towards Arylphosphonates: Organicâ€Dyeâ€Catalyzed Phosphorylation of Arylhydrazines with Trialkylphosphites. Advanced Synthesis and Catalysis, 2018, 360, 4807-4813.	4.3	82
56	Silver-Catalyzed Radical Cascade Cyclization toward 1,5-/1,3-Dicarbonyl Heterocycles: An Atom-/Step-Economical Strategy Leading to Chromenopyridines and Isoxazole-/Pyrazole-Containing Chroman-4-Ones. Organic Letters, 2018, 20, 6157-6160.	4.6	75
57	Copper-Catalyzed Radical Cascade Cyclization To Access 3-Sulfonated Indenones with the AIE Phenomenon. Journal of Organic Chemistry, 2018, 83, 14419-14430.	3.2	74
58	Silver-catalyzed decarboxylative cascade radical cyclization of <i>tert</i> -carboxylic acids and <i>o</i> -(allyloxy)arylaldehydes towards chroman-4-one derivatives. Organic Chemistry Frontiers, 2018, 5, 2925-2929.	4.5	70
59	Phosphorus Radical-Initiated Cascade Reaction To Access 2-Phosphoryl-Substituted Quinoxalines. Journal of Organic Chemistry, 2018, 83, 11727-11735.	3.2	69
60	lodineâ€Mediated Sulfonylation of Quinoline <i>N</i> â€Oxides: a Mild and Metalâ€Free Oneâ€Pot Synthesis of 2â€Sulfonyl Quinolines. Asian Journal of Organic Chemistry, 2017, 6, 492-495.	2.7	50
61	Synthesis of (E)-β-iodovinyl sulfones via DTBP/I ₂ promoted difunctionalization of alkynes with sodium benzenesulfinates. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 391-396.	1.6	13
62	A direct metal-free C2–H functionalization of quinoline N-oxides: a highly selective amination and alkylation strategy towards 2-substituted quinolines. Organic Chemistry Frontiers, 2017, 4, 1595-1600.	4.5	56
63	<i>H</i> -phosphonate mediated sulfonylation of 2-substituted quinoline <i>N</i> -oxides: One-pot strategy for the synthesis of 3/4-sulfonylquinoline derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 887-895.	1.6	3
64	Acetonitrile-dependent oxyphosphorylation: A mild one-pot synthesis of β-ketophosphonates from alkenyl acids or alkenes. Tetrahedron, 2017, 73, 2439-2446.	1.9	37
65	A Multiheteroatom [3,3]-Sigmatropic Rearrangement: Disproportionative Entries into 2-(<i>N</i> -Heteroaryl)methyl Phosphates and α-Keto Phosphates. Organic Letters, 2017, 19, 5864-5867.	4.6	34
66	A Direct C2â€Selective Phenoxylation and Alkoxylation of Quinoline <i>N</i> â€Oxides with Various Phenols and Alcohols in the Presence of <i>H</i> â€Phosphonate. European Journal of Organic Chemistry, 2017, 2017, 5125-5130.	2.4	13
67	Synthesis of novel phosphorylated chrysin derivatives by 1, 3-dipolar cycloaddition reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 1-8.	1.6	8
68	Synthesis of βâ€Ketosulfones by using Sulfonyl Chloride as a Sulfur Source. Asian Journal of Organic Chemistry, 2016, 5, 878-881.	2.7	31
69	Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu ₂ 0 Nanorods. Small, 2016, 12, 4264-4276.	10.0	28
70	Highly Efficient Ultrasonicâ€Assisted CuClâ€Catalyzed 1,3â€Dipolar Cycloaddition Reactions in Water: Synthesis of Coumarin Derivatives Linked with 1,2,3â€Triazole Moiety. Journal of Heterocyclic Chemistry, 2016, 53, 1402-1411.	2.6	12
71	Ammonia/water vapor-induced internal hydrolysis synthesis of sulfated TiO2/SBA-15 solid acid. Journal of Porous Materials, 2016, 23, 1353-1362.	2.6	0
72	A one-pot strategy to synthesize β-ketophosphonates: silver/copper catalyzed direct oxyphosphorylation of alkynes with H-phosphonates and oxygen in the air. Chemical Communications, 2015, 51, 3846-3849.	4.1	85

#	Article	IF	CITATIONS
73	H-phosphonate-mediated sulfonylation of heteroaromatic N-oxides: a mild and metal-free one-pot synthesis of 2-sulfonyl quinolines/pyridines. Chemical Communications, 2015, 51, 12111-12114.	4.1	111
74	Copper catalyzed direct tert-butyl sulfonylation of alkynes with t-butylsulfinamide leading to (E)-vinyl sulfones. RSC Advances, 2015, 5, 71215-71218.	3.6	10
75	Copper(I)â€Catalyzed Dehydrogenative Amidation of Arenes Using Air as the Oxidant. Advanced Synthesis and Catalysis, 2015, 357, 1311-1315.	4.3	39
76	An Efficient Synthesis of 1,2,3-Triazole Bridge-Connected Phosphonate Derivatives of Coumarin. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 961-971.	1.6	4
77	Synthesis and Characterization of Phosphoramide Piperazine Analogs of Paeonol. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 404-410.	1.6	3
78	A Practical Method to Synthesize 1,2,3-Triazole-Amino-Bisphosphonate Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1735-1742.	1.6	6
79	CuSO ₄ ·5H ₂ Oâ€ <i>H</i> â€Phosphonate atalyzed Intermolecular C–S Bond Formation: Synthesis of (<i>E</i>)â€Vinyl Alkylsulfones from AlkynesÂ-and DMSO. European Journal of Organic Chemistry, 2015, 2015, 314-319.	2.4	21
80	CuSO ₄ -H-phosphonate catalyzed highly stereo- and regioselective dimerization of terminal alkynes. RSC Advances, 2015, 5, 5004-5009.	3.6	8
81	Silver catalyzed decarboxylative direct C2-alkylation of benzothiazoles with carboxylic acids. Chemical Communications, 2014, 50, 2018.	4.1	83
82	Peroxides as "Switches―of Dialkyl <i>H</i> -Phosphonate: Two Mild and Metal-Free Methods for Preparation of 2-Acylbenzothiazoles and Dialkyl Benzothiazol-2-ylphosphonates. Journal of Organic Chemistry, 2014, 79, 8407-8416.	3.2	68
83	Hâ€Phosphonateâ€Mediated Amination of Quinoline <i>N</i> â€Oxides with Tertiary Amines: A Mild and Metalâ€Free Synthesis of 2â€Dialkylaminoquinolines. Advanced Synthesis and Catalysis, 2014, 356, 1979-1985.	4.3	39
84	Synthesis and Spectroscopic Characterization of Some New Piperazine Phosphoramide Derivatives of 4-Hydroxycoumarin. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 245-254.	1.6	13
85	A DFT study of the enantioselective reduction of oxime ethers promoted by chiral spiroborate esters. International Journal of Quantum Chemistry, 2012, 112, 1449-1459.	2.0	2
86	An Efficient Synthesis of Mono and Bisâ€1,2,3â€ŧriazole AZT Derivatives via Copper(I)â€catalyzed Cycloaddition. Journal of the Chinese Chemical Society, 2011, 58, 24-30.	1.4	7
87	An Efficient Ultrasound-assisted Method for the Synthesis of 1,4-Disubstituted Triazoles. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2011, 66, 77-82.	0.7	4
88	Synthesis of Novel Coumarin-7,8-cyclophosphoramide Analogs. Synthetic Communications, 2010, 40, 1992-1997.	2.1	6
89	Synthesis of New Types of <i>N</i> â€Arylpiperazine Phosphoramide Analogues of Chrysin. Journal of the Chinese Chemical Society, 2010, 57, 144-148.	1.4	3
90	A Convenient Synthesis of Chrysin-7-yl Aryl N-Bis(2-Chloroethyl) Phosphoramidate. Journal of Chemical Research, 2010, 34, 407-409.	1.3	1

#	Article	IF	CITATIONS
91	Synthesis of the Novel Phosphoramidate Derivatives of Chrysin. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 274-278.	1.6	9
92	Synthesis of Novel Piperazine Phosphoramidate Analogues of 2-Arylquinolones. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1516-1520.	1.6	0
93	A Convenient Synthesis of Novel Phosphoramide Mustard Analogues of 2-Arylquinolone. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 2936-2944.	1.6	7
94	Synthesis of a Novel Type of Phosphoramidate Derivatives of 2â€Arylquinolone. Journal of the Chinese Chemical Society, 2009, 56, 51-58.	1.4	6
95	A Convenient Method for the Synthesis of Cyclophosphamide Analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 799-803.	1.6	5
96	ESI Investigation of Non-Covalent Complexes between Phosphorylated Daidzein Derivatives and Insulin. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 527-537.	1.6	1
97	Synthesis of Phosphoryl Amino Acids Chrysin Esters. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 603-609.	1.6	9
98	Synthesis of Solanesyl Phosphonate. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 631-635.	1.6	1
99	Synthesis of a Novel Type of Phosphates of Puerarin. Journal of the Chinese Chemical Society, 2007, 54, 583-585.	1.4	5
100	Investigation of the Interaction between Isoflavonoids and Bovine Serum Albumin by Fluorescence Spectroscopy. Chinese Journal of Chemistry, 2007, 25, 1151-1155.	4.9	8
101	Chemical Components of Leptopus chinensis. Chemistry of Natural Compounds, 2005, 41, 565-568.	0.8	9
102	The Investigation of β yclodextrin Noncovalent Complex with Protein or Dipeptide by Electrospray Ionization Mass Spectrometry. Analytical Letters, 2004, 37, 1871-1883.	1.8	4
103	Direct Observation of Non-covalent Complexes Formed Through Phosphorylated Flavonoid Protein Interaction by Electrospray Ionization Mass Spectrometry. Supramolecular Chemistry, 2004, 16, 67-75.	1.2	10
104	Synthesis of Novel Phosphoric Esters of Flavone and Isoflavone by Atherton–Todd Reaction. Synthetic Communications, 2004, 34, 493-499.	2.1	14
105	The Nature of Phosphorylated Chrysinâ^'Protein Interactions Involved in Noncovalent Complex Formation by Electrospray Ionization Mass Spectroscopy. Analytical Chemistry, 2004, 76, 211-217.	6.5	37
106	Visible lightâ€promoted recyclable carbon nitrideâ€catalyzed dioxygenation of β,γâ€unsaturated oximes. Advanced Synthesis and Catalysis, 0, , .	4.3	17