

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/386143/publications.pdf Version: 2024-02-01

Ним Гт

#	Article	IF	CITATIONS
1	Electrophoretic deposition of graphene oxide on continuous carbon fibers for reinforcement of both tensile and interfacial strength. Composites Science and Technology, 2016, 135, 46-53.	7.8	121
2	Effect of NiCrBSi content on microstructural evolution, cracking susceptibility and wear behaviors of laser cladding WC/Ni–NiCrBSi composite coatings. Journal of Alloys and Compounds, 2015, 626, 102-111.	5.5	104
3	Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings. Applied Surface Science, 2019, 465, 700-714.	6.1	101
4	High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding. Applied Surface Science, 2017, 402, 478-494.	6.1	83
5	Effect of the content of B4C on microstructural evolution and wear behaviors of the laser-clad coatings fabricated on Ti6Al4V. Optics and Laser Technology, 2016, 76, 33-45.	4.6	78
6	Wear behaviors of an (TiB+TiC)/Ti composite coating fabricated on Ti6Al4V by laser cladding. Thin Solid Films, 2011, 519, 4804-4808.	1.8	69
7	Wear and high-temperature oxidation resistances of AlNbTaZrx high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding. Journal of Alloys and Compounds, 2021, 862, 158405.	5.5	59
8	Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate. Optics and Laser Technology, 2015, 65, 66-75.	4.6	58
9	Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate. Materials Characterization, 2014, 98, 83-92.	4.4	55
10	Microstructural evolution and wear behaviors of laser cladding Ti 2 Ni/α(Ti) dual-phase coating reinforced by TiB and TiC. Applied Surface Science, 2015, 355, 298-309.	6.1	49
11	Electrochemically reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitors. RSC Advances, 2014, 4, 13673.	3.6	48
12	Effects of the thickness of the pre-placed layer on microstructural evolution and mechanical properties of the laser-clad coatings. Journal of Alloys and Compounds, 2015, 644, 450-463.	5.5	46
13	Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes. Materials, 2017, 10, 936.	2.9	43
14	Microstructure and mechanical properties of Ni-based composite coatings reinforced by in situ synthesized TiB2 + TiC by laser cladding. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 57-64.	4.9	42
15	Effect of heat treatment on residual stress and wear behaviors of the TiNi/Ti2Ni based laser cladding composite coatings. Optics and Laser Technology, 2017, 97, 379-389.	4.6	39
16	Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders. Transactions of Nonferrous Metals Society of China, 2010, 20, 2192-2197.	4.2	35
17	Effect of yttrium on microstructure and mechanical properties of laser clad coatings reinforced by in situ synthesized TiB and TiC. Journal of Rare Earths, 2011, 29, 477-483.	4.8	35
18	Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding. Rare Metals, 2010, 29, 465-472.	7.1	34

Jun Li

#	Article	IF	CITATIONS
19	Synthesis of porous Co3O4/Reduced graphene oxide by a two-step method for supercapacitors with excellent electrochemical performance. Journal of Alloys and Compounds, 2020, 815, 152373.	5.5	34
20	Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor. Materials, 2017, 10, 1205.	2.9	33
21	Synthesis of Ni-MOF derived NiO/rGO composites as novel electrode materials for high performance supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126653.	4.7	29
22	Oxidation behaviors of the TiNi/Ti2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding. Journal of Alloys and Compounds, 2016, 679, 202-212.	5.5	26
23	Evolution in microstructure and high-temperature oxidation behaviors of the laser-cladding coatings with the Si addition contents. Journal of Alloys and Compounds, 2020, 827, 154131.	5.5	25
24	Microstructure and mechanical properties of an in situ synthesized TiB and TiC reinforced titanium matrix composite coating. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 1-8.	1.0	24
25	Corrosion behaviors of TiNi/Ti2Ni matrix coatings in the environment rich in Cl ions. Surface and Coatings Technology, 2017, 311, 295-306.	4.8	24
26	Residual stress distribution in different depths of TiNi/Ti 2 Ni-based laser clad coating prepared at different environmental temperatures. Transactions of Nonferrous Metals Society of China, 2017, 27, 2043-2054.	4.2	21
27	Evolution in electrochemical performance of the solid blend polymer electrolyte (PEO/PVDF) with the content of ZnO nanofiller. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127773.	4.7	21
28	Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti) matrix coating produced by laser cladding. Rare Metals, 2020, 39, 304-315.	7.1	16
29	Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition. Rare Metals, 2020, 39, 436-447.	7.1	16
30	Microstructural evolution of titanium matrix composite coatings reinforced by in situ synthesized TiB and TiC by laser cladding. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 481-488.	4.9	15
31	Evolution in Wear and High-Temperature Oxidation Resistance of Laser-Clad AlxMoNbTa Refractory High-Entropy Alloys Coatings with Al Addition Content. Coatings, 2022, 12, 121.	2.6	15
32	Preparation of the TiB2 coatings by electroplating in molten salts. Materials Letters, 2007, 61, 1274-1278.	2.6	14
33	Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO2 Nanofibers by Electrospinning for Lithium Ion Batteries. Materials, 2019, 12, 2630.	2.9	13
34	Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer's solution. Rare Metals, 2010, 29, 37-44.	7.1	10
35	Investigation into corrosion and wear behaviors of laser-clad coatings on Ti6Al4V. Materials Research Express, 2020, 7, 016587.	1.6	9
36	Investigation into electrochemical performance of NiO/graphene composite nanofibers synthesized by a simple method as anode materials for high-performance lithium ion batteries. Materials Research Express, 2020, 7, 115007.	1.6	9

Jun Li

#	Article	IF	CITATIONS
37	Microstructures and mechanical properties of a new titanium alloy for surgical implant application. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 185-191.	4.9	8
38	Nucleation and Growth of Porous MnO2 Coatings Prepared on Nickel Foam and Evaluation of Their Electrochemical Performance. Materials, 2018, 11, 716.	2.9	8
39	Microstructure and properties of in situ synthesized TiB2+WC reinforced composite coatings. Rare Metals, 2008, 27, 451-456.	7.1	7
40	Investigation into Microstructure, Wear Resistance in Air and NaCl Solution of AlCrCoNiFeCTax High-Entropy Alloy Coatings Fabricated by Laser Cladding. Coatings, 2021, 11, 358.	2.6	7
41	Synthesis of Honeycomb-Like Co3O4 Nanosheets with Excellent Supercapacitive Performance by Morphological Controlling Derived from the Alkaline Source Ratio. Materials, 2018, 11, 1560.	2.9	7
42	Wear analysis of the composite coating in a long sliding time by dissipated energy approach. Science and Engineering of Composite Materials, 2017, 24, 853-864.	1.4	5
43	Synthesis and electrochemical performance of hollow-structured NiOÂ+ÂNi nanofibers wrapped by graphene as anodes for Li-ion batteries. Nanotechnology, 2021, 32, 335603.	2.6	5
44	Investigation into the Corrosion Wear Resistance of CoCrFeNiAlx Laser-Clad Coatings Mixed with the Substrate. Metals, 2022, 12, 460.	2.3	5
45	Effect of Y2O3 on cracking susceptibility of laser-clad Ti-based composites coatings. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1011-1018.	1.0	4
46	Fabrication of Mesoporous Graphene@Ag@TiO ₂ Composite Nanofibers Via Electrospinning as Anode Materials for High-Performance Li-Ion Batteries. Nano, 2021, 16, .	1.0	0
47	Synthesis of Honeycomb-Like Coâ,ƒOâ," Nanosheets with Excellent Supercapacitive Performance by Morphological Controlling Derived from the Alkaline Source Ratio. Materials, 2018, 11, .	2.9	0