
Salvatore Scire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3860840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A solar photothermocatalytic approach for the CO2 conversion: Investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts. Chemical Engineering Journal, 2022, 428, 131249.	6.6	39
2	Photocatalytic H2 Production on Au/TiO2: Effect of Au Photodeposition on Different TiO2 Crystalline Phases. J, 2022, 5, 92-104.	0.6	1
3	Removal of Phthalates from Water by Unconventional Laâ€based/WO ₃ Photocatalysts. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	5
4	A sustainable porous composite material based on loofah-halloysite for gas adsorption and drug delivery. Materials Chemistry Frontiers, 2022, 6, 2233-2243.	3.2	8
5	Catalytic applications of TiO2. , 2021, , 637-679.		3
6	Nanosponges based on self-assembled starfish-shaped cucurbit[6]urils functionalized with imidazolium arms. Chemical Communications, 2021, 57, 3664-3667.	2.2	8
7	A Facile One-Pot Approach to the Synthesis of Gd-Eu Based Metal-Organic Frameworks and Applications to Sensing of Fe3+ and Cr2O72â^ lons. Sensors, 2021, 21, 1679.	2.1	13
8	Degradation of the O-phenylphenol Fungicide in Water by Unconventional CeO2-WO3 Photocatalysts. Journal of Photocatalysis, 2021, 2, 234-242.	0.4	1
9	Solar photocatalytic H2 production over CeO2-based catalysts: Influence of chemical and structural modifications. Catalysis Today, 2021, 380, 187-198.	2.2	18
10	One-Pot Synthesis of TiO2-rGO Photocatalysts for the Degradation of Groundwater Pollutants. Materials, 2021, 14, 5938.	1.3	16
11	Cerium and cerium oxide: A brief introduction. , 2020, , 1-12.		3
12	Photocatalytic and photothermocatalytic applications of cerium oxide-based materials. , 2020, , 109-167.		17
13	Preface to the volume. , 2020, , xix-xx.		0
14	Frontispiece: Roomâ€Temperature Laser Synthesis in Liquid of Oxide, Metalâ€Oxide Coreâ€Shells, and Doped Oxide Nanoparticles. Chemistry - A European Journal, 2020, 26, .	1.7	2
15	Exploring the Photothermo-Catalytic Performance of Brookite TiO2-CeO2 Composites. Catalysts, 2020, 10, 765.	1.6	34
16	TiO ₂ Colloids Laser-Treated in Ethanol for Photocatalytic H ₂ Production. ACS Applied Nano Materials, 2020, 3, 9127-9140.	2.4	14
17	CeO2 for Water Remediation: Comparison of Various Advanced Oxidation Processes. Catalysts, 2020, 10, 446.	1.6	25
18	High-Performing Au-Ag Bimetallic Catalysts Supported on Macro-Mesoporous CeO2 for Preferential Oxidation of CO in H2-Rich Gases, Catalysts, 2020, 10, 49.	1.6	18

#	Article	IF	CITATIONS
19	Roomâ€Temperature Laser Synthesis in Liquid of Oxide, Metalâ€Oxide Coreâ€Shells, and Doped Oxide Nanoparticles. Chemistry - A European Journal, 2020, 26, 9206-9242.	1.7	189
20	Catalytic and Photothermo-catalytic Applications of TiO2-CoOx Composites. Journal of Photocatalysis, 2020, 1, 3-15.	0.4	9
21	Laser-Induced Synthesis and Processing of Nanoparticles in the Liquid Phase for Biosensing and Catalysis. Springer Series in Materials Science, 2020, , 133-162.	0.4	0
22	Pyrite and Organic Compounds Coexisting in Intrusive Mafic Xenoliths (Hyblean Plateau, Sicily): Implications for Subsurface Abiogenesis. Origins of Life and Evolution of Biospheres, 2019, 49, 19-47.	0.8	5
23	Mechanical milling: a sustainable route to induce structural transformations in MoS2 for applications in the treatment of contaminated water. Scientific Reports, 2019, 9, 974.	1.6	26
24	Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts. International Journal of Hydrogen Energy, 2019, 44, 14796-14807.	3.8	38
25	Photocatalytic H2 production over inverse opal TiO2 catalysts. Catalysis Today, 2019, 321-322, 113-119.	2.2	29
26	Dataâ€Driven Modelling of Gas Solubility in Ionic Liquids Using Principal Properties as Orthogonal Descriptors. ChemistrySelect, 2018, 3, 2181-2184.	0.7	1
27	Visible light photocatalytic activity of macro-mesoporous TiO 2 -CeO 2 inverse opals. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 25-34.	2.0	60
28	Carbon supported bimetallic Ru-Co catalysts for H ₂ production through NaBH ₄ and NH ₃ BH ₃ hydrolysis. International Journal of Energy Research, 2018, 42, 1183-1195.	2.2	47
29	Ru–Pd Bimetallic Catalysts Supported on CeO2-MnOX Oxides as Efficient Systems for H2 Purification through CO Preferential Oxidation. Catalysts, 2018, 8, 203.	1.6	29
30	Effect of the addition of different doping agents on visible light activity of porous TiO2 photocatalysts. Molecular Catalysis, 2018, 455, 108-120.	1.0	42
31	Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging. Scientific Reports, 2017, 7, 40663.	1.6	7
32	Modeling from Theory and Modeling from Data: Complementary or Alternative Approaches? The Case of Ionic Liquids. ChemistryOpen, 2017, 6, 90-101.	0.9	4
33	Laser processing of TiO2 colloids for an enhanced photocatalytic water splitting activity. Journal of Colloid and Interface Science, 2017, 489, 131-137.	5.0	43
34	Gas principal properties as new compact descriptors for data-driven gas solubility modelling. Arkivoc, 2017, 2017, 356-369.	0.3	1
35	Smart Design of Sustainable and Efficient ILs. RSC Smart Materials, 2017, , 168-195.	0.1	1
36	Au/TiO2-CeO2 Catalysts for Photocatalytic Water Splitting and VOCs Oxidation Reactions. Catalysts, 2016, 6, 121.	1.6	63

3

#	Article	IF	CITATIONS
37	Selective oxidation of CO in H2-rich stream over ZSM5 zeolites supported Ru catalysts: An investigation on the role of the support and the Ru particle size. Applied Catalysis A: General, 2016, 520, 82-91.	2.2	24
38	A QSPR approach to the ecotoxicity of ionic liquids (Vibrio fischeri) using VolSurf principal properties. Toxicology Research, 2016, 5, 1090-1096.	0.9	13
39	Photoactivity of hierarchically nanostructured ZnO–PES fibre mats for water treatments. RSC Advances, 2016, 6, 42778-42785.	1.7	37
40	Prediction of ionic liquid's heat capacity by means of their in silico principal properties. RSC Advances, 2016, 6, 36085-36089.	1.7	8
41	Slow pyrolysis kinetics of apricots stones by Thermogravimetric Analysis. , 2016, , .		0
42	H2 purification through preferential oxidation of CO over ceria supported bimetallic Au-based catalysts. International Journal of Hydrogen Energy, 2016, 41, 19390-19398.	3.8	26
43	A comparison between photocatalytic and catalytic oxidation of 2-Propanol over Au/TiO 2 –CeO 2 catalysts. Journal of Molecular Catalysis A, 2016, 415, 56-64.	4.8	43
44	Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 2016, 224, 764-771.	4.0	75
45	Cyto- and enzyme toxicities of ionic liquids modelled on the basis of VolSurf+ descriptors and their principal properties. SAR and QSAR in Environmental Research, 2016, 27, 221-244.	1.0	19
46	Modelling the aquatic toxicity of ionic liquids by means of VolSurf <i>in silico</i> descriptors. SAR and QSAR in Environmental Research, 2016, 27, 1-15.	1.0	18
47	Kinetic of the Pyrolysis Process of Peach and Apricot Pits by TGA and DTGA Analysis. International Journal of Heat and Technology, 2016, 34, S553-S560.	0.3	12
48	Au–Ag/CeO2 and Au–Cu/CeO2 Catalysts for Volatile Organic Compounds Oxidation and CO Preferential Oxidation. Catalysis Letters, 2015, 145, 1691-1702.	1.4	62
49	A multivariate insight into ionic liquids toxicities. RSC Advances, 2014, 4, 23985-24000.	1.7	22
50	Liquid phase photo-deposition in the presence of unmodified β-cyclodextrin: A new approach for the preparation of supported Pd catalysts. Journal of Molecular Catalysis A, 2012, 353-354, 87-94.	4.8	20
51	Supported gold catalysts for the total oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2012, 125, 222-246.	10.8	289
52	Role of the Support and the Ru Precursor on the Performance of Ru/Carbon Catalysts Towards H2 Production Through NaBH4 Hydrolysis. Catalysis Letters, 2012, 142, 882-888.	1.4	38
53	Selective oxidation of CO in H2-rich stream over Au/CeO2 and Cu/CeO2 catalysts: An insight on the effect of preparation method and catalyst pretreatment. Applied Catalysis A: General, 2012, 417-418, 66-75.	2.2	51
54	Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily. Lithos, 2011, 125, 956-968.	0.6	27

#	Article	IF	CITATIONS
55	Direct and sensitized liquid phase photodeposition for the preparation of alumina supported Pd nanoparticles for applications to heterogeneous catalysis. Journal of Nanoparticle Research, 2011, 13, 3217-3228.	0.8	9
56	Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC. Applied Catalysis A: General, 2011, 395, 10-18.	2.2	59
57	Hydrogen production through NaBH4 hydrolysis over supported Ru catalysts: An insight on the effect of the support and the ruthenium precursor. International Journal of Hydrogen Energy, 2011, 36, 3817-3826.	3.8	63
58	Ceria supported group IB metal catalysts for the combustion of volatile organic compounds and the preferential oxidation of CO. Applied Catalysis B: Environmental, 2010, 101, 109-117.	10.8	116
59	Preparation of ceria and titania supported Pt catalysts through liquid phase photo-deposition. Journal of Molecular Catalysis A, 2010, 333, 100-108.	4.8	9
60	Design of nano-sized FeOx and Au/FeOx catalysts for total oxidation of VOC and preferential oxidation of CO. Studies in Surface Science and Catalysis, 2010, 175, 785-788.	1.5	4
61	N-benzoxazol-2-yl-Nâ€2-1-(isoquinolin-3-yl-ethylidene)-hydrazine, a novel compound with antitumor activity, induces radicals and dissipation of mitochondrial membrane potential. Investigational New Drugs, 2009, 27, 189-202.	1.2	11
62	Combined effect of noble metals (Pd, Au) and support properties on HDS activity of Co/SiO2 catalysts. Applied Catalysis A: General, 2009, 353, 296-304.	2.2	28
63	Supported silver catalysts prepared by deposition in aqueous solution of Ag nanoparticles obtained through a photochemical approach. Applied Catalysis A: General, 2009, 367, 138-145.	2.2	30
64	Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes (Sicily): Genesis in a serpentinite hydrothermal system. Chemical Geology, 2009, 258, 258-268.	1.4	25
65	The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts. Applied Catalysis A: General, 2008, 341, 18-25.	2.2	82
66	Selective oxidation of CO in H2-rich stream over gold/iron oxide: An insight on the effect of catalyst pretreatment. Journal of Molecular Catalysis A, 2008, 284, 24-32.	4.8	51
67	Identification of genes involved in radiationâ€induced G ₁ arrest. Journal of Chemometrics, 2007, 21, 398-405.	0.7	3
68	Identification of genes involved in the sensitivity to antitumour drug 17-allylamino,17-demethoxygeldanamycin (17AAG). Molecular BioSystems, 2006, 2, 231.	2.9	7
69	An investigation on the use of liquid phase photo-deposition for the preparation of supported Pt catalysts. Applied Catalysis A: General, 2006, 306, 51-57.	2.2	20
70	One-step conversion of n-butane to isobutene over H-beta supported Pt and Pt,M (M=Cu, In, Sn) catalysts: An investigation on the role of the second metal. Journal of Molecular Catalysis A, 2006, 260, 109-114.	4.8	5
71	Principal properties (PPs) for lanthanide triflates as Lewis-acid catalysts. Journal of Chemometrics, 2006, 20, 418-424.	0.7	12
72	Genome-based identification of diagnostic molecular markers for human lung carcinomas by PLS-DA. Computational Biology and Chemistry, 2005, 29, 183-195.	1.1	19

#	Article	IF	CITATIONS
73	Adsorption of Organic Compounds onto Activated Carbons from Recycled Vegetables Biomass. Annali Di Chimica, 2004, 94, 547-554.	0.6	1
74	Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis. Journal of Chemometrics, 2004, 18, 125-132.	0.7	49
75	Dehydroisomerization of n-butane over H-Y zeolite supported Pt and Pt,Sn catalysts. Applied Catalysis A: General, 2004, 274, 151-157.	2.2	14
76	The Role of the Support in the Oxidative Destruction of Chlorobenzene on Pt/Zeolite Catalysts: An FT-IR Investigation. Catalysis Letters, 2003, 91, 199-205.	1.4	20
77	Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B: Environmental, 2003, 40, 43-49.	10.8	403
78	Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Applied Catalysis B: Environmental, 2003, 45, 117-125.	10.8	117
79	Effect of the Al/Si atomic ratio on surface and structural properties of sol–gel prepared aluminosilicates. Journal of Solid State Chemistry, 2003, 174, 482-488.	1.4	63
80	A Bioinformatic Approach to the Identification of Candidate Genes for the Development of New Cancer Diagnostics. Biological Chemistry, 2003, 384, 321-327.	1.2	70
81	Principal properties (PPs) as solvent descriptors for multivariate optimisation in organic synthesis: specific PPs for ethers. Arkivoc, 2003, 2002, 54-64.	0.3	20
82	Catalytic combustion of chlorobenzene over Pt/zeolite catalysts. Studies in Surface Science and Catalysis, 2002, , 1023-1030.	1.5	16
83	Cyclocarbonylation reactions of allylphenols and allylnaphthols catalyzed by Pd/C- 1,4-bis(diphenylphosphine)butane. Applied Organometallic Chemistry, 2002, 16, 543-546.	1.7	15
84	In vitro antitumor activities of 2,6-di-[2-(Heteroaryl)vinyl]pyridines and pyridiniums. Bioorganic and Medicinal Chemistry, 2002, 10, 2899-2904.	1.4	22
85	Ni–Ru bimetallic catalysts for the CO2 reforming of methane. Applied Catalysis A: General, 2002, 225, 1-9.	2.2	161
86	Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors. Applied Catalysis A: General, 2002, 235, 21-31.	2.2	116
87	Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3. Catalysis Communications, 2001, 2, 229-232.	1.6	132
88	Low-frequency Raman modes and atomic force microscopy for the size determination of catalytic gold clusters supported on iron oxide. Surface Science, 2001, 494, 75-82.	0.8	11
89	MODDE, Version 5.0, available from UMETRICS AB, European Office: Box 7960 SE-90719 UMEÃ, Sweden (telephone: +46-90-184800, fax: +46-90-184899, Web: http://www.umetrics.com); North American Office:		

#	Article	IF	CITATIONS
91	Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide. Applied Catalysis B: Environmental, 2001, 34, 277-285.	10.8	160
92	Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Applied Catalysis B: Environmental, 2000, 28, 245-251.	10.8	215
93	CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts. Catalysis Letters, 1999, 59, 21-26.	1.4	157
94	Influence of the support on CO2 methanation over Ru catalysts: an FT-IR study. Catalysis Letters, 1998, 51, 41-45.	1.4	82
95	Effect of the acid–base properties of Pd–Ca/Al2O3 catalysts on the selective hydrogenation of phenol to cyclohexanone: FT-IR and TPD characterization. Applied Surface Science, 1998, 136, 311-320.	3.1	34
96	FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catalysis Letters, 1997, 47, 273-276.	1.4	170
97	Activated Carbons: In Vitro Affinity for Aflatoxin B1 and Relation of Adsorption Ability to Physicochemical Parameters. Journal of Food Protection, 1996, 59, 545-550.	0.8	32
98	FT-IR characterization of alkali-doped Pd catalysts for the selective hydrogenation of phenol to cyclohexanone. Applied Surface Science, 1996, 93, 309-316.	3.1	40
99	catalysts: characterization by FT-IR spectroscopy. Applied Surface Science, 1996, 99, 401-409.	3.1	16
100	An investigation of the mechanism of the selective catalytic reduction of NO on various metal/ZSM-5 catalysts: reactions of H2/NO mixtures. Catalysis Letters, 1994, 27, 177-186.	1.4	44
101	Selective catalytic reduction of nitric oxide with ethane and methane on some metal exchanged ZSM-5 zeolites. Applied Catalysis B: Environmental, 1994, 3, 295-318.	10.8	180
102	Ru–Cu/SiO2catalysts: characterization by FTIR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2809-2813.	1.7	16
103	Bimetallic Ruî—,Cu/SiO2 catalysts: Effect of total surface area on the catalytic properties. Journal of Molecular Catalysis, 1993, 83, 237-250.	1.2	17
104	Propane aromatization over Pt-T1/ZSM-5. Applied Catalysis A: General, 1993, 103, 123-134.	2.2	7
105	Effect of Catalyst Preparation on the Performance of Supported Ru-Cu Bimetallic Systems. Studies in Surface Science and Catalysis, 1993, , 1871-1874.	1.5	0
106	Hydrogenolysis reactions during propane aromatization over Pt/ZSM-5. Reaction Kinetics and Catalysis Letters, 1992, 46, 255-261.	0.6	3
107	Bimetallic Ruâ^'Cu over ZSM5 zeolites in propane hydrogenolysis. Reaction Kinetics and Catalysis Letters, 1992, 48, 367-374.	0.6	6
108	Influence of iridium, rhenium and lanthanum on propane aromatization over platinum/ZSM-5 catalysts. Applied Catalysis A: General, 1991, 79, 29-40.	2.2	16

#	Article	IF	CITATIONS
109	Influence of lead on propane aromatization over Pt/ZSM5 catalysts. Reaction Kinetics and Catalysis Letters, 1990, 41, 153-159.	0.6	5
110	Performance of supported Ru-Cu bimetallic catalysts prepared from nitrate precursors. Catalysis Letters, 1990, 6, 77-83.	1.4	22
111	Effect of precursor on the catalytic behaviour of Ru-Cu/MgO. Journal of Molecular Catalysis, 1990, 63, 55-63.	1.2	17
112	Influence of the support on the catalytic properties of bimetallic Ru-Cu samples. Journal of Molecular Catalysis, 1989, 50, 67-80.	1.2	19
113	Propane aromatization over Ptâ^'Sn/ZSM-5 catalysts. Reaction Kinetics and Catalysis Letters, 1989, 40, 349-356.	0.6	10