
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3860757/publications.pdf Version: 2024-02-01



<u> Υλ-ΝΑΝ ΖΗΛΝ</u>Ω

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2022, 351, 130942.               | 7.8  | 37        |
| 2  | Highly sensitive salinity sensor based on Mach-Zehnder interferometer with double-C fiber.<br>Fundamental Research, 2022, 2, 296-302.                                                              | 3.3  | 8         |
| 3  | A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosensors and Bioelectronics, 2022, 198, 113798.                                 | 10.1 | 44        |
| 4  | Simultaneous Measurement of Temperature and Relative Humidity Using Cascaded C-shaped Fabry-Perot<br>interferometers. Journal of Lightwave Technology, 2022, 40, 1209-1215.                        | 4.6  | 24        |
| 5  | Plug-in label-free optical fiber DNA hybridization sensor based on C-type fiber Vernier effect. Sensors and Actuators B: Chemical, 2022, 354, 131212.                                              | 7.8  | 26        |
| 6  | Plug-in optical fiber SPR biosensor for lung cancer gene detection with temperature and pH compensation. Sensors and Actuators B: Chemical, 2022, 359, 131596.                                     | 7.8  | 40        |
| 7  | A Relative Humidity Sensor Based on Non-Adiabatic Tapered Optical Fiber for Remote Measurement in Power Cable Tunnel. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.         | 4.7  | 1         |
| 8  | High Precision Optical Path Difference Compensation Method Based on Three- Parameter Cosine<br>Fitting Method. Journal of Lightwave Technology, 2022, 40, 4911-4918.                               | 4.6  | 4         |
| 9  | Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection.<br>Talanta, 2022, 247, 123599.                                                               | 5.5  | 29        |
| 10 | Multichannel Fiber Optic SPR Sensors: Realization Methods, Application Status, and Future Prospects.<br>Laser and Photonics Reviews, 2022, 16, .                                                   | 8.7  | 34        |
| 11 | Fiber-optic sensors based on Vernier effect. Measurement: Journal of the International Measurement<br>Confederation, 2021, 167, 108451.                                                            | 5.0  | 122       |
| 12 | Characteristics of a new multi-channel sensing device based on C-type photonic crystal fibers. Optics and Laser Technology, 2021, 134, 106622.                                                     | 4.6  | 17        |
| 13 | A review of specialty fiber biosensors based on interferometer configuration. Journal of Biophotonics, 2021, 14, e202100068.                                                                       | 2.3  | 57        |
| 14 | Optical Fiber Optofluidic Bio hemical Sensors: A Review. Laser and Photonics Reviews, 2021, 15, 2000526.                                                                                           | 8.7  | 59        |
| 15 | Optical fiber sensors for glucose concentration measurement: A review. Optics and Laser Technology, 2021, 139, 106981.                                                                             | 4.6  | 71        |
| 16 | In Situ Temperature-Compensated DNA Hybridization Detection Using a Dual-Channel Optical Fiber<br>Sensor. Analytical Chemistry, 2021, 93, 10561-10567.                                             | 6.5  | 51        |
| 17 | Fiber-Optic SPR pH Sensor Based on MMF–NCF–MMF Structure and Self-Assembled Nanofilm. IEEE<br>Transactions on Instrumentation and Measurement, 2021, 70, 1-9.                                      | 4.7  | 11        |
| 18 | Optical Fiber SPR Sensor With Surface Ion Imprinting for Highly Sensitive and Highly Selective<br>Ni <sup>2+</sup> Detection. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6. | 4.7  | 11        |

YA-NAN ZHANG

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Highly-Sensitive SPR Urea Biosensor Based on Urease Immobilized in Metal-Organic Zeolite Framework.<br>, 2021, , .                                                                                     |     | 1         |
| 20 | Experimental Research on Ethanol Gas Sensing Characteristics of Microbottle Resonator Based on Whispering Gallery Mode. , 2021, , .                                                                    |     | 1         |
| 21 | Magnetic field sensor based on ring WGM resonator infiltrated with magnetic fluid. Journal of<br>Magnetism and Magnetic Materials, 2020, 493, 165701.                                                  | 2.3 | 23        |
| 22 | Research on Fabrication and Sensing Properties of Fiber-Coupled Whispering Gallery Mode<br>Microsphere Resonator. IEEE Sensors Journal, 2020, 20, 833-841.                                             | 4.7 | 17        |
| 23 | Design of highly-sensitive fiber thermal anemometer based on reflective photonic crystal fiber loop<br>mirror. Optical Fiber Technology, 2020, 54, 102114.                                             | 2.7 | 1         |
| 24 | Highly-sensitive ethanol gas sensor based on poly dimethylsiloxane coated micro-nano fiber. , 2020, , .                                                                                                |     | 0         |
| 25 | All-fiber all-optical quantitative polymerase chain reaction (qPCR). Sensors and Actuators B:<br>Chemical, 2020, 323, 128681.                                                                          | 7.8 | 27        |
| 26 | Highly-sensitive mercury ion sensor based on DNA modified micro-nano fiber. , 2020, , .                                                                                                                |     | 0         |
| 27 | Theoretical and experimental characterization of a salinity and temperature sensor employing optical fiber surface plasmon resonance (SPR). Instrumentation Science and Technology, 2020, 48, 601-615. | 1.8 | 41        |
| 28 | Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance.<br>Microchemical Journal, 2020, 157, 105010.                                                          | 4.5 | 50        |
| 29 | Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement:<br>Journal of the International Measurement Confederation, 2020, 158, 107742.                           | 5.0 | 64        |
| 30 | Beta-cyclodextrin based reflective fiber-optic SPR sensor for highly-sensitive detection of cholesterol concentration. Optical Fiber Technology, 2020, 56, 102187.                                     | 2.7 | 28        |
| 31 | Polydimethylsiloxane self-assembled whispering gallery mode microbottle resonator for ethanol sensing. Optical Materials, 2020, 107, 110024.                                                           | 3.6 | 16        |
| 32 | Two-Channel Surface Plasmon Resonance Sensor for Simultaneous Measurement of Seawater Salinity and Temperature. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 7191-7199.             | 4.7 | 61        |
| 33 | High-resolution, large-dynamic-range multimode interferometer sensor based on a suspended-core microstructured optical fiber. Optics Letters, 2020, 45, 1017.                                          | 3.3 | 9         |
| 34 | Two-core photonic crystal fiber with selective liquid infiltration in the central air hole for temperature sensing. OSA Continuum, 2020, 3, 2264.                                                      | 1.8 | 1         |
| 35 | Optical Fiber SPR Sensor for Highly-Sensitive Detection of Cholesterol Concentration. , 2020, , .                                                                                                      |     | 0         |
| 36 | Investigation of Volatile Organic Compound Gas Sensor Based on Polydimethylsiloxane<br>Self-Assembled Fabry-Perot Interferometer. , 2020, , .                                                          |     | 1         |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement: Journal of the International Measurement Confederation, 2019, 148, 106792. | 5.0 | 111       |
| 38 | Theoretical Design and Simulation Optimization of Photonic Crystal Cavity for Tetrahydrofuran<br>Vapor Sensing. Physica Status Solidi (B): Basic Research, 2019, 256, 1900221.                     | 1.5 | 9         |
| 39 | Reflex optical fiber probe for simultaneous determination of seawater salinity and temperature by surface plasmon resonance. Instrumentation Science and Technology, 2019, 47, 374-388.            | 1.8 | 25        |
| 40 | Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Optics and Laser Technology, 2019, 113, 46-51.                                                                 | 4.6 | 31        |
| 41 | All-fiber Mach–Zehnder interferometer with dual-waist PCF structure for highly sensitive refractive index sensing. Applied Physics B: Lasers and Optics, 2019, 125, 1.                             | 2.2 | 8         |
| 42 | Reflective Fiber Surface Plasmon Resonance Sensor for High-Sensitive Mercury Ion Detection. Applied Sciences (Switzerland), 2019, 9, 1480.                                                         | 2.5 | 23        |
| 43 | Capillary encapsulated reflective fiber optic SPR temperature sensor. Physica Scripta, 2019, 94, 045504.                                                                                           | 2.5 | 8         |
| 44 | Novel Fiber Grating for Sensing Applications. Physica Status Solidi (A) Applications and Materials<br>Science, 2019, 216, 1800820.                                                                 | 1.8 | 15        |
| 45 | Optical fiber refractive index sensor with low detection limit and large dynamic range using a hybrid fiber interferometer. Journal of Lightwave Technology, 2019, , 1-1.                          | 4.6 | 28        |
| 46 | High-Sensitive Fiber Anemometer Based on Surface Plasmon Resonance Effect in Photonic Crystal<br>Fiber. IEEE Sensors Journal, 2019, 19, 3391-3398.                                                 | 4.7 | 19        |
| 47 | In-fiber Surface Plasmon Resonance Temperature Sensor Based on PDMS Infiltrated Hollow Core Fiber.<br>, 2019, , .                                                                                  |     | 0         |
| 48 | Reflective SPR Sensor for Simultaneous Measurement of Nitrate Concentration and Temperature. IEEE<br>Transactions on Instrumentation and Measurement, 2019, 68, 4566-4574.                         | 4.7 | 53        |
| 49 | Experimental and numerical investigation on hollow core photonic crystal fiber based bending sensor. Optics Express, 2019, 27, 30629.                                                              | 3.4 | 22        |
| 50 | Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing. Optics and Laser<br>Technology, 2018, 102, 262-267.                                                              | 4.6 | 20        |
| 51 | A reflective hydrogen sensor based on fiber ring laser with PCF modal interferometer. Journal of<br>Optics (United Kingdom), 2018, 20, 065401.                                                     | 2.2 | 5         |
| 52 | Simultaneous Measurement of Electric Field and Strain With a Tandem-Interferometric Device. IEEE<br>Transactions on Instrumentation and Measurement, 2018, 67, 965-970.                            | 4.7 | 15        |
| 53 | Simultaneous Measurement of Hydrogen Concentration and Temperature Based on Fiber Loop Mirror<br>Combined With PCF. IEEE Sensors Journal, 2018, 18, 2369-2376.                                     | 4.7 | 12        |
| 54 | Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab on A Chip, 2018, 18, 57-74.                                                       | 6.0 | 96        |

YA-NAN ZHANG

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber. Sensors and Actuators B: Chemical, 2018, 258, 822-828.                  | 7.8 | 151       |
| 56 | Low cost non-adiabatic tapered fiber for high-sensitive temperature sensing. Optical Fiber Technology, 2018, 45, 53-57.                                                                              | 2.7 | 23        |
| 57 | Optical bio-chemical sensors based on whispering gallery mode resonators. Nanoscale, 2018, 10, 13832-13856.                                                                                          | 5.6 | 109       |
| 58 | Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology. Sensors, 2018, 18, 505.                                                                                                     | 3.8 | 27        |
| 59 | Non-contact flow rate detection of component in mixed gas using spectrum absorption theory.<br>Optical Fiber Technology, 2018, 45, 167-172.                                                          | 2.7 | 2         |
| 60 | In-Line Mach–Zehnder Interferometer and FBG With Smart Hydrogel for Simultaneous pH and<br>Temperature Detection. IEEE Sensors Journal, 2018, 18, 7499-7504.                                         | 4.7 | 27        |
| 61 | Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating. Sensors and Actuators B: Chemical, 2018, 272, 331-339.                    | 7.8 | 34        |
| 62 | Review on Optical Fiber Sensors Based on the Refractive Index Tunability of Ferrofluid. Journal of Lightwave Technology, 2017, 35, 3406-3412.                                                        | 4.6 | 54        |
| 63 | Electric Field Sensor Based on Photonic Crystal Cavity With Liquid Crystal Infiltration. Journal of<br>Lightwave Technology, 2017, 35, 3440-3446.                                                    | 4.6 | 33        |
| 64 | Recent advancements in optical fiber hydrogen sensors. Sensors and Actuators B: Chemical, 2017, 244, 393-416.                                                                                        | 7.8 | 152       |
| 65 | Hydrogen sensor based on high-birefringence fiber loop mirror with sol-gel Pd/WO3 coating. Sensors and Actuators B: Chemical, 2017, 248, 71-76.                                                      | 7.8 | 32        |
| 66 | High-Sensitive Hydrogen Sensor Based on Photonic Crystal Fiber Model Interferometer. IEEE<br>Transactions on Instrumentation and Measurement, 2017, 66, 2198-2203.                                   | 4.7 | 37        |
| 67 | Optimization of photonic crystal fiber for optical hydrogen sensing. , 2017, , .                                                                                                                     |     | 0         |
| 68 | Theoretical Research on the Thermal-Lens Effect of Magnetic Fluid by Using Brownian Dynamics<br>Method. IEEE Transactions on Magnetics, 2017, 53, 1-7.                                               | 2.1 | 3         |
| 69 | A New Hydrogen Sensor Based on SNS Fiber Interferometer with Pd/WO3 Coating. Sensors, 2017, 17, 2144.                                                                                                | 3.8 | 15        |
| 70 | Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil. Review of Scientific Instruments, 2016, 87, 125002. | 1.3 | 15        |
| 71 | Measurement of RI and Temperature Using Composite Interferometer With Hollow-Core Fiber and Photonic Crystal Fiber. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2631-2636.       | 4.7 | 35        |
| 72 | Characterization of displacement sensing based on fiber optic microbend losses. Instrumentation Science and Technology, 2016, 44, 471-482.                                                           | 1.8 | 8         |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sensors and Actuators B: Chemical, 2016, 228, 665-672.                                                   | 7.8 | 44        |
| 74 | Characterization of infrared gas sensors employing hollow-core photonic crystal fibers.<br>Instrumentation Science and Technology, 2016, 44, 495-503.                                                                    | 1.8 | 7         |
| 75 | Review on the graphene based optical fiber chemical and biological sensors. Sensors and Actuators B:<br>Chemical, 2016, 231, 324-340.                                                                                    | 7.8 | 267       |
| 76 | Simultaneous Measurement of Magnetic Field and Temperature Based on Magnetic Fluid-Infiltrated<br>Photonic Crystal Cavity. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 1055-1062.                    | 4.7 | 21        |
| 77 | Review on the Optimization Methods of Slow Light in Photonic Crystal Waveguide. IEEE<br>Nanotechnology Magazine, 2015, 14, 407-426.                                                                                      | 2.0 | 59        |
| 78 | A review for optical sensors based on photonic crystal cavities. Sensors and Actuators A: Physical, 2015, 233, 374-389.                                                                                                  | 4.1 | 159       |
| 79 | Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature. Sensors and Actuators B: Chemical, 2015, 216, 563-571.                                                    | 7.8 | 27        |
| 80 | Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity.<br>Sensors and Actuators B: Chemical, 2015, 209, 431-437.                                                              | 7.8 | 64        |
| 81 | A NOVEL BRILLOUIN OPTICAL TIME-DOMAIN REFLECTOMETER DEMODULATING METHOD BASED ON A SLOW-LIGHT MACH-ZEHNDER INTERFEROMETER. Instrumentation Science and Technology, 2014, 42, 290-297.                                    | 1.8 | 2         |
| 82 | Theoretical Research on Optofluidic Photonic Crystal Waveguide for Broadly Tunable and<br>Ultra-Wideband Slow Light. International Journal of Optomechatronics, 2014, 8, 114-128.                                        | 6.6 | 1         |
| 83 | High-sensitive refractive index sensor based on slow light engineered photonic crystal cavity. , 2014, , .                                                                                                               |     | 0         |
| 84 | Dispersion Engineering of Slow Light in Ellipse-Shaped-Hole Slotted Photonic Crystal Waveguide.<br>Journal of Lightwave Technology, 2014, 32, 2144-2151.                                                                 | 4.6 | 15        |
| 85 | Fiber Loop Ring-Down Refractive Index Sensor Based on High- <inline-formula> <tex-math<br>notation="TeX"&gt;\$Q\$ </tex-math<br></inline-formula> Photonic Crystal Cavity. IEEE Sensors<br>Journal, 2014, 14, 1878-1885. | 4.7 | 25        |
| 86 | SIMULTANEOUS MEASUREMENT OF STRAIN AND TEMPERATURE WITH POLARIZATION MAINTAINING FIBER BRAGG GRATING LOOP MIRROR. Instrumentation Science and Technology, 2014, 42, 298-307.                                             | 1.8 | 6         |
| 87 | Slow-Light Optimization of Polymer-Infiltrated Slot Photonic Crystal Waveguide. IEEE<br>Nanotechnology Magazine, 2014, 13, 687-694.                                                                                      | 2.0 | 13        |
| 88 | Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration.<br>Sensors and Actuators B: Chemical, 2013, 184, 179-188.                                                              | 7.8 | 34        |
| 89 | Optimization of Slow Light in Slotted Photonic Crystal Waveguide With Liquid Infiltration. Journal of Lightwave Technology, 2013, 31, 2448-2454.                                                                         | 4.6 | 19        |
| 90 | HIGH-SENSITIVITY OPTICAL FIBER GAS SENSORS BASED ON NOVEL OPTICAL DEVICES. Instrumentation Science and Technology, 2013, 41, 187-201.                                                                                    | 1.8 | 6         |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | High Sensitive BOTDR Demodulation Method by Using Slow-Light in Fiber Grating. Journal of<br>Lightwave Technology, 2013, 31, 3345-3351.                                        | 4.6 | 10        |
| 92 | Fiber loop ring-down refractive index sensor based on high-Q photonic crystal cavity. , 2012, , .                                                                              |     | 1         |
| 93 | Wideband Slow Light With Large Group Index and Low Dispersion in Slotted Photonic Crystal<br>Waveguide. Journal of Lightwave Technology, 2012, 30, 2812-2817.                  | 4.6 | 26        |
| 94 | REVIEW ON STRUCTURES AND PRINCIPLES OF GAS CELLS IN THE ABSORPTION SPECTRUM–BASED OPTICAL FIBER GAS SENSOR SYSTEMS. Instrumentation Science and Technology, 2012, 40, 385-401. | 1.8 | 6         |