Shofarul Wustoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3860542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nature Biomedical Engineering, 2021, 5, 666-677.	22.5	235
2	Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nature Materials, 2020, 19, 456-463.	27.5	187
3	A fully inkjet-printed disposable glucose sensor on paper. Npj Flexible Electronics, 2018, 2, .	10.7	136
4	Balancing Ionic and Electronic Conduction for Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2020, 30, 1907657.	14.9	131
5	Ionic-to-electronic coupling efficiency in PEDOT:PSS films operated in aqueous electrolytes. Journal of Materials Chemistry C, 2018, 6, 12023-12030.	5.5	108
6	Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nature Communications, 2020, 11, 3004.	12.8	82
7	Membraneâ€Free Detection of Metal Cations with an Organic Electrochemical Transistor. Advanced Functional Materials, 2019, 29, 1904403.	14.9	80
8	Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-β Detection. ACS Nano, 2021, 15, 8130-8141.	14.6	59
9	Organic Bioelectronic Devices for Metabolite Sensing. Chemical Reviews, 2022, 122, 4581-4635.	47.7	55
10	Enzymeâ€Free Detection of Glucose with a Hybrid Conductive Gel Electrode. Advanced Materials Interfaces, 2019, 6, 1800928.	3.7	51
11	Muscle Fatigue Sensor Based on Ti ₃ C ₂ T <i>_x</i> MXene Hydrogel. Small Methods, 2021, 5, e2100819.	8.6	49
12	In Situ Electrochemical Synthesis of a Conducting Polymer Composite for Multimetabolite Sensing. Advanced Materials Technologies, 2020, 5, 1900943.	5.8	39
13	An organic electrochemical transistor integrated with a molecularly selective isoporous membrane for amyloid-β detection. Biosensors and Bioelectronics, 2019, 143, 111561.	10.1	36
14	Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing. Sensors and Actuators B: Chemical, 2021, 329, 129251.	7.8	35
15	Inkjet-printed Ti ₃ C ₂ T _x MXene electrodes for multimodal cutaneous biosensing. JPhys Materials, 2020, 3, 044004.	4.2	30
16	Sensitive electrical detection of human prion proteins using field effect transistor biosensor with dual-ligand binding amplification. Biosensors and Bioelectronics, 2015, 67, 256-262.	10.1	28
17	MXene improves the stability and electrochemical performance of electropolymerized PEDOT films. APL Materials, 2020, 8, .	5.1	25
18	A Self-standing Organic Supercapacitor to Power Bioelectronic Devices. ACS Applied Energy Materials, 2020. 3. 7896-7907.	5.1	24

SHOFARUL WUSTONI

#	Article	IF	CITATIONS
19	Buffer-free integrative nanofluidic device for real-time continuous flow bioassays by ion concentration polarization. Lab on A Chip, 2018, 18, 574-584.	6.0	19
20	Label-free detection of Cu(ii) in a human serum sample by using a prion protein-immobilized FET sensor. Analyst, The, 2015, 140, 6485-6488.	3.5	17
21	Effect of human serum on the electrical detection of amyloid-β fibrils in biological environments using azo-dye immobilized field effect transistor (FET) biosensor. Sensing and Bio-Sensing Research, 2018, 17, 25-29.	4.2	16
22	Integration of Organic Electrochemical Transistors with Implantable Probes. Advanced Materials Technologies, 2021, 6, 2100763.	5.8	16
23	Benchmarking the Performance of Electropolymerized Poly(3,4â€ethylenedioxythiophene) Electrodes for Neural Interfacing. Macromolecular Bioscience, 2020, 20, e2000215.	4.1	15
24	Lipid bilayer formation on organic electronic materials. Journal of Materials Chemistry C, 2018, 6, 5218-5227.	5.5	12
25	Visualizing the Solid–Liquid Interface of Conjugated Copolymer Films Using Fluorescent Liposomes. ACS Applied Bio Materials, 2018, 1, 1348-1354.	4.6	12
26	Hydroxymethyl PEDOT microstructure-based electrodes for high-performance supercapacitors. APL Materials, 2022, 10, .	5.1	11
27	Monitoring Amyloid Sup35NM Growth with Labelâ€Free Electrical Detection Using a Fieldâ€Effect Transistor Biosensor. ChemElectroChem, 2014, 1, 51-54.	3.4	8
28	Tailoring Electropolymerized Poly(3,4â€ethylenedioxythiophene) Films for Oxygen Reduction Reaction. Advanced Materials Technologies, 2022, 7, 2100277.	5.8	7
29	Conversion of protein net charge via chemical modification for highly sensitive prion detection using field effect transistor (FET) biosensor. Sensors and Actuators B: Chemical, 2016, 230, 374-379.	7.8	3
30	CONVERSION OF THE LOW QUALITY INDONESIAN NATURALLY-OCCURRING MINERALS INTO SELECTIVE TYPE OF ZEOLITES BY SEED-ASSISTED SYNTHESIS METHOD. Indonesian Journal of Chemistry, 2013, 13, 278-282.	0.8	3
31	Performance of PEDOTOH/PEOâ€based Supercapacitors in Agarose Gel Electrolyte. Chemistry - an Asian Journal, 2022, 17, .	3.3	3
32	Sustainable synthesis of gold nanorods assisted by cubic-shaped seeds as intermediate particles. Inorganic Chemistry Communication, 2018, 93, 78-82.	3.9	2
33	Pathogen and Protein Detection using Organic Electronics. , 2022, , .		0
34	Conjugated Polymer based Electronics for Diagnostics in Physiological Media. , 2022, , .		0

3