## Xing Chen

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3860206/publications.pdf

Version: 2024-02-01

|          |                | 117625       |     | 118850         |
|----------|----------------|--------------|-----|----------------|
| 89       | 4,343          | 34           |     | 62             |
| papers   | citations      | h-index      |     | g-index        |
|          |                |              |     |                |
|          |                |              | _ ' |                |
|          |                |              |     |                |
| 103      | 103            | 103          |     | 4949           |
| all docs | docs citations | times ranked |     | citing authors |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Photocaged Azidosugar for <scp>Lightâ€Controlled</scp> Metabolic Labeling of <scp>Cellâ€Surface</scp> Sialoglycans. Chinese Journal of Chemistry, 2022, 40, 806-812.                                                                     | 4.9  | 7         |
| 2  | Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nature Biotechnology, 2022, 40, 606-617.                                                                                               | 17.5 | 140       |
| 3  | An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS Chemical Biology, 2022, 17, 513-520.                                    | 3.4  | 11        |
| 4  | Wolf Prize in Chemistry 2022: A Celebration for Chemical Biology. ACS Chemical Biology, 2022, , .                                                                                                                                          | 3.4  | 1         |
| 5  | Optical Cell Tagging for Spatially Resolved Singleâ€Cell RNA Sequencing. Angewandte Chemie -<br>International Edition, 2022, 61, e202113929.                                                                                               | 13.8 | 7         |
| 6  | Optical Cell Tagging for Spatially Resolved Singleâ€Cell RNA Sequencing. Angewandte Chemie, 2022, 134, .                                                                                                                                   | 2.0  | 0         |
| 7  | Cell-type-specific labeling and profiling of glycans in living mice. Nature Chemical Biology, 2022, 18, 625-633.                                                                                                                           | 8.0  | 21        |
| 8  | O-GlcNAcylation modulates liquid–liquid phase separation of SynGAP/PSD-95. Nature Chemistry, 2022, 14, 831-840.                                                                                                                            | 13.6 | 27        |
| 9  | <i>In Situ</i> Probe of the Hydrogen Oxidation Reaction Intermediates on PtRu a Bimetallic Catalyst<br>Surface by Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Nano Letters, 2022, 22, 5544-5552.                                  | 9.1  | 32        |
| 10 | Chemical Tagging of Protein Lipoylation. Angewandte Chemie - International Edition, 2021, 60, 4028-4033.                                                                                                                                   | 13.8 | 13        |
| 11 | Grapheneâ€coated Au nanoparticleâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 439-445.                                                                                                                           | 2.5  | 14        |
| 12 | Click-ExM enables expansion microscopy for all biomolecules. Nature Methods, 2021, 18, 107-113.                                                                                                                                            | 19.0 | 91        |
| 13 | Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for Bâ€Cell Lymphoma Therapy.<br>Angewandte Chemie - International Edition, 2021, 60, 3603-3610.                                                                    | 13.8 | 44        |
| 14 | Chemical Tagging of Protein Lipoylation. Angewandte Chemie, 2021, 133, 4074-4079.                                                                                                                                                          | 2.0  | 3         |
| 15 | Molecular Insight of the Critical Role of Ni in Pt-Based Nanocatalysts for Improving the Oxygen Reduction Reaction Probed Using an <i>In Situ</i> SERS Borrowing Strategy. Journal of the American Chemical Society, 2021, 143, 1318-1322. | 13.7 | 105       |
| 16 | Quantitative and Site-Specific Chemoproteomic Profiling of Protein O-GlcNAcylation in the Cell Cycle. ACS Chemical Biology, 2021, 16, 1917-1923.                                                                                           | 3.4  | 17        |
| 17 | Live-Cell Imaging of NADPH Production from Specific Pathways. CCS Chemistry, 2021, 3, 1642-1648.                                                                                                                                           | 7.8  | 5         |
| 18 | Glycan Labeling and Analysis in Cells and In Vivo. Annual Review of Analytical Chemistry, 2021, 14, 363-387.                                                                                                                               | 5.4  | 41        |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Quantitative chemoproteomics reveals O-GlcNAcylation of cystathionine $\hat{l}^3$ -lyase (CSE) represses trophoblast syncytialization. Cell Chemical Biology, 2021, 28, 788-801.e5.                         | 5.2  | 21        |
| 20 | Ligand-Free Fabrication of Ag Nanoassemblies for Highly Sensitive and Reproducible Surface-Enhanced Raman Scattering Sensing of Antibiotics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1766-1772. | 8.0  | 11        |
| 21 | Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for B ell Lymphoma Therapy. Angewandte Chemie, 2021, 133, 3647-3654.                                                                 | 2.0  | 2         |
| 22 | Chemoproteomic Profiling of O-GlcNAcylation in <i>Caenorhabditis elegans</i> . Biochemistry, 2020, 59, 3129-3134.                                                                                           | 2.5  | 10        |
| 23 | <i>Inâ€situ</i> SHINERS Study of the Size and Composition Effect of Ptâ€based Nanocatalysts in Catalytic Hydrogenation. ChemCatChem, 2020, 12, 75-79.                                                       | 3.7  | 24        |
| 24 | Metabolic RNA labeling for probing RNA dynamics in bacteria. Nucleic Acids Research, 2020, 48, 12566-12576.                                                                                                 | 14.5 | 17        |
| 25 | Raman Imaging Shines a Light on Neurodegenerative Disorders. ACS Central Science, 2020, 6, 459-460.                                                                                                         | 11.3 | 2         |
| 26 | Protein S-Glyco-Modification through an Elimination–Addition Mechanism. Journal of the American Chemical Society, 2020, 142, 9382-9388.                                                                     | 13.7 | 79        |
| 27 | Enhancing Catalytic Activity and Selectivity by Plasmon-Induced Hot Carriers. IScience, 2020, 23, 101107.                                                                                                   | 4.1  | 4         |
| 28 | O-GlcNAcylation of myosin phosphatase targeting subunit 1 (MYPT1) dictates timely disjunction of centrosomes. Journal of Biological Chemistry, 2020, 295, 7341-7349.                                        | 3.4  | 19        |
| 29 | S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nature Chemical Biology, 2019, 15, 983-991.                                                                         | 8.0  | 179       |
| 30 | Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nature Communications, 2019, 10, 4065.                                    | 12.8 | 95        |
| 31 | 9-Azido Analogues of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans.<br>ACS Chemical Biology, 2019, 14, 2141-2147.                                                           | 3.4  | 9         |
| 32 | Gap-Junction-Dependent Labeling of Nascent Proteins in Multicellular Networks. ACS Chemical Biology, 2019, 14, 182-185.                                                                                     | 3.4  | 6         |
| 33 | Assessing the viability of transplanted gut microbiota by sequential tagging with D-amino acid-based metabolic probes. Nature Communications, 2019, 10, 1317.                                               | 12.8 | 68        |
| 34 | Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nature Chemical Biology, 2019, 15, 213-216.                                                                            | 8.0  | 21        |
| 35 | Metabolic glycan labeling-assisted discovery of cell-surface markers for primary neural stem and progenitor cells. Chemical Communications, 2018, 54, 5486-5489.                                            | 4.1  | 2         |
| 36 | Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3879-E3887.                         | 7.1  | 138       |

| #  | Article                                                                                                                                                                                                                       | IF   | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas. Science China Chemistry, 2018, 61, 792-796.                                                    | 8.2  | 25        |
| 38 | Mechanistic Investigation and Multiplexing of Liposome-Assisted Metabolic Glycan Labeling. Journal of the American Chemical Society, 2018, 140, 3592-3602.                                                                    | 13.7 | 48        |
| 39 | Hybrid Indicators for Fast and Sensitive Voltage Imaging. Angewandte Chemie - International Edition, 2018, 57, 3949-3953.                                                                                                     | 13.8 | 34        |
| 40 | Rücktitelbild: Artificial Cysteine Sâ€Clycosylation Induced by Perâ€Oâ€Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling (Angew. Chem. 7/2018). Angewandte Chemie, 2018, 130, 2024-2024.                  | 2.0  | 0         |
| 41 | Artificial Cysteine Sâ€Glycosylation Induced by Perâ€Oâ€Acetylated Unnatural Monosaccharides during<br>Metabolic Glycan Labeling. Angewandte Chemie, 2018, 130, 1835-1838.                                                    | 2.0  | 27        |
| 42 | Detecting the Sweet Biomarker on Cancer Cells. ACS Central Science, 2018, 4, 428-430.                                                                                                                                         | 11.3 | 3         |
| 43 | Artificial Cysteine Sâ€Glycosylation Induced by Perâ€Oâ€Acetylated Unnatural Monosaccharides during<br>Metabolic Glycan Labeling. Angewandte Chemie - International Edition, 2018, 57, 1817-1820.                             | 13.8 | 148       |
| 44 | Capture and Identification of RNA-binding Proteins by Using Click Chemistry-assisted RNA-interactome Capture (CARIC) Strategy. Journal of Visualized Experiments, 2018, , .                                                   | 0.3  | 9         |
| 45 | Carbon Trading Scheme in the People's Republic of China: Evaluating the Performance of Seven Pilot<br>Projects. Asian Development Review, 2018, 35, 131-152.                                                                  | 1.5  | 8         |
| 46 | Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. ACS Chemical Biology, 2018, 13, 1983-1989.                                                                                     | 3.4  | 73        |
| 47 | Liposome-Assisted Metabolic Glycan Labeling With Cell and Tissue Selectivity. Methods in Enzymology, 2018, 598, 321-353.                                                                                                      | 1.0  | 7         |
| 48 | Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens. Ecotoxicology and Environmental Safety, 2018, 164, 739-748.                                                                                      | 6.0  | 30        |
| 49 | Implementation of acoustic demultiplexing with membrane-type metasurface in low frequency range. Applied Physics Letters, 2017, $110$ , .                                                                                     | 3.3  | 34        |
| 50 | Expanding the Scope of Metabolic Glycan Labeling in <i>Arabidopsis thaliana</i> . ChemBioChem, 2017, 18, 1286-1296.                                                                                                           | 2.6  | 24        |
| 51 | Magnetic-control multifunctional acoustic metasurface for reflected wave manipulation at deep subwavelength scale. Scientific Reports, 2017, 7, 9050.                                                                         | 3.3  | 46        |
| 52 | Editorial overview: Molecular imaging for seeing chemistry in biology. Current Opinion in Chemical Biology, 2017, 39, iv-v.                                                                                                   | 6.1  | 1         |
| 53 | Quantitative time-resolved chemoproteomics reveals that stable <i>O</i> -GlcNAc regulates box C/D snoRNP biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6749-E6758. | 7.1  | 81        |
| 54 | Biological behaviors and chemical fates of Ag2Se quantum dots in vivo: the effect of surface chemistry. Toxicology Research, 2017, 6, 693-704.                                                                                | 2.1  | 24        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Selective Imaging of Gram-Negative and Gram-Positive Microbiotas in the Mouse Gut. Biochemistry, 2017, 56, 3889-3893.                                                                                                              | 2.5  | 65        |
| 56 | Metabolic Labeling and Imaging of Nâ€Linked Glycans in <i>Arabidopsis Thaliana</i> International Edition, 2016, 55, 9301-9305.                                                                                                     | 13.8 | 60        |
| 57 | In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5173-5178. | 7.1  | 122       |
| 58 | Metabolic Remodeling of Cellâ $\in$ Surface Sialic Acids: Principles, Applications, and Recent Advances. ChemBioChem, 2016, 17, 11-27.                                                                                             | 2.6  | 100       |
| 59 | Metabolic Labeling and Imaging of Nâ€Linked Glycans in <i>Arabidopsis Thaliana</i> . Angewandte Chemie, 2016, 128, 9447-9451.                                                                                                      | 2.0  | 21        |
| 60 | Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes. ACS Chemical Biology, 2016, 11, 3273-3277.                                                                            | 3.4  | 20        |
| 61 | Blood Clearance, Distribution, Transformation, Excretion, and Toxicity of Near-Infrared Quantum<br>Dots Ag <sub>2</sub> Se in Mice. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17859-17869.                                | 8.0  | 68        |
| 62 | Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery. ACS Applied Materials & Interfaces, 2016, 8, 4500-4507.                                                 | 8.0  | 25        |
| 63 | Structure of protein O-mannose kinase reveals a unique active site architecture. ELife, 2016, 5, .                                                                                                                                 | 6.0  | 33        |
| 64 | Proteinâ€Specific Imaging of Oâ€GlcNAcylation in Single Cells. ChemBioChem, 2015, 16, 2571-2575.                                                                                                                                   | 2.6  | 52        |
| 65 | Carbon nanotube-assisted optical activation of TGF- $\hat{l}^2$ signalling by near-infrared light. Nature Nanotechnology, 2015, 10, 465-471.                                                                                       | 31.5 | 57        |
| 66 | Chemical Remodeling of Cellâ€Surface Sialic Acids through a Palladiumâ€Triggered Bioorthogonal Elimination Reaction. Angewandte Chemie - International Edition, 2015, 54, 5364-5368.                                               | 13.8 | 92        |
| 67 | Dynamic Sialylation in Transforming Growth Factor- $\hat{l}^2$ (TGF- $\hat{l}^2$ )-induced Epithelial to Mesenchymal Transition. Journal of Biological Chemistry, 2015, 290, 12000-12013.                                          | 3.4  | 64        |
| 68 | Protein-specific imaging of posttranslational modifications. Current Opinion in Chemical Biology, 2015, 28, 156-163.                                                                                                               | 6.1  | 19        |
| 69 | Live-cell bioorthogonal Raman imaging. Current Opinion in Chemical Biology, 2015, 24, 91-96.                                                                                                                                       | 6.1  | 23        |
| 70 | Targeted Imaging and Proteomic Analysis of Tumorâ€Associated Glycans in Living Animals. Angewandte Chemie - International Edition, 2014, 53, 14082-14086.                                                                          | 13.8 | 71        |
| 71 | SERS Imaging of Cell‧urface Biomolecules Metabolically Labeled with Bioorthogonal Raman Reporters. Chemistry - an Asian Journal, 2014, 9, 2040-2044.                                                                               | 3.3  | 25        |
| 72 | A Cis-Membrane FRET-Based Method for Protein-Specific Imaging of Cell-Surface Glycans. Journal of the American Chemical Society, 2014, 136, 679-687.                                                                               | 13.7 | 101       |

| #  | Article                                                                                                                                                                                                                                                | IF   | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nature Chemical Biology, 2014, 10, 21-28.                                                                                                                    | 8.0  | 128       |
| 74 | Glycan Imaging in Intact Rat Hearts and Glycoproteomic Analysis Reveal the Upregulation of Sialylation during Cardiac Hypertrophy. Journal of the American Chemical Society, 2014, 136, 17468-17476.                                                   | 13.7 | 73        |
| 75 | Liveâ€Cell Stimulated Raman Scattering Imaging of Alkyneâ€Tagged Biomolecules. Angewandte Chemie -<br>International Edition, 2014, 53, 5827-5831.                                                                                                      | 13.8 | 169       |
| 76 | Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature, 2013, 501, 242-246.                                                                                                                                 | 27.8 | 247       |
| 77 | Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities. Current Opinion in Chemical Biology, 2013, 17, 747-752.                                                                                                          | 6.1  | 46        |
| 78 | Bifunctional Unnatural Sialic Acids for Dual Metabolic Labeling of Cell-Surface Sialylated Glycans. Journal of the American Chemical Society, 2013, 135, 9244-9247.                                                                                    | 13.7 | 104       |
| 79 | Innentitelbild: A Bioorthogonal Raman Reporter Strategy for SERS Detection of Glycans on Live Cells (Angew. Chem. 28/2013). Angewandte Chemie, 2013, 125, 7184-7184.                                                                                   | 2.0  | 2         |
| 80 | A Bioorthogonal Raman Reporter Strategy for SERS Detection of Glycans on Live Cells. Angewandte Chemie - International Edition, 2013, 52, 7266-7271.                                                                                                   | 13.8 | 132       |
| 81 | Cell-Selective Metabolic Glycan Labeling Based on Ligand-Targeted Liposomes. Journal of the American Chemical Society, 2012, 134, 9914-9917.                                                                                                           | 13.7 | 139       |
| 82 | Theoretical Studies on the Photoinduced Rearrangement Mechanism of αâ€Santonin. ChemPhysChem, 2012, 13, 353-362.                                                                                                                                       | 2.1  | 7         |
| 83 | Protein photocrosslinking reveals dimer of dimers formation on MarR protein in Escherichia coli.<br>Science China Chemistry, 2012, 55, 106-111.                                                                                                        | 8.2  | 4         |
| 84 | Zero-point vibrational corrections to isotropic hyperfine coupling constants in polyatomic molecules. Physical Chemistry Chemical Physics, 2011, 13, 696-707.                                                                                          | 2.8  | 14        |
| 85 | Role of the <sup>3</sup> (Ï∈Ï∈*) State in Photolysis of Lumisantonin: Insight from ab Initio Studies.<br>Journal of Physical Chemistry A, 2011, 115, 7815-7822.                                                                                        | 2.5  | 2         |
| 86 | Theoretical study on the dual fluorescence of 2-(4-cyanophenyl)-N,N-dimethylaminoethane and its deactivation pathway. Journal of Chemical Physics, 2009, 130, 144307.                                                                                  | 3.0  | 7         |
| 87 | Metabolic Labeling of Sialic Acids in Living Animals with Alkynyl Sugars. Angewandte Chemie -<br>International Edition, 2009, 48, 4030-4033.                                                                                                           | 13.8 | 195       |
| 88 | Theoretical studies on structures and electronic spectra of linear carbon chains $C \cdot sub > 2 \cdot i > n \cdot /i > + (sup > + \cdot /sup > ( \cdot i > n \cdot /i > = 1â^3)$ . International Journal of Quantum Chemistry, 2009, 109, 1116-1126. | 2.0  | 4         |
| 89 | Theoretical Study on the Singlet Excited State of Pterin and Its Deactivation Pathway. Journal of Physical Chemistry A, 2007, 111, 9255-9262.                                                                                                          | 2.5  | 20        |