Haiwei Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3860089/publications.pdf

Version: 2024-02-01

840776 1199594 12 657 11 12 citations h-index g-index papers 15 15 15 724 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping. Biotechnology for Biofuels, 2021, 14, 162.	6.2	34
2	Is oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds. Green Chemistry, 2019, 21, 803-811.	9.0	46
3	Tungsten-based catalysts for lignin depolymerization: the role of tungsten species in C–O bond cleavage. Catalysis Science and Technology, 2019, 9, 2144-2151.	4.1	28
4	Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chemical Science, 2019, 10, 4458-4468.	7.4	154
5	Selective Cleavage of Câ^'O Bonds in Lignin Catalyzed by Rhenium(VII) Oxide (Re ₂ O ₇). ChemPlusChem, 2018, 83, 500-505.	2.8	16
6	Selective Cleavage of Câ^'O Bonds in Lignin Catalyzed by Rhenium(VII) Oxide (Re2 O7). ChemPlusChem, 2018, 83, 479-479.	2.8	0
7	Tungstenâ€Based Bimetallic Catalysts for Selective Cleavage of Lignin Câ^O Bonds. ChemCatChem, 2018, 10, 415-421.	3.7	52
8	Unravelling the enigma of lignin ^{OX} : can the oxidation of lignin be controlled?. Chemical Science, 2018, 9, 702-711.	7.4	64
9	Effects of Extraction Methods on Structure and Valorization of Corn Stover Lignin by a Pd/C Catalyst. ChemCatChem, 2017, 9, 1135-1143.	3.7	36
10	Valorization of Lignin to Simple Phenolic Compounds over Tungsten Carbide: Impact of Lignin Structure. ChemSusChem, 2017, 10, 523-532.	6.8	141
11	Selective Production of Toluene from Biomassâ€Derived Isoprene and Acrolein. ChemSusChem, 2016, 9, 3434-3440.	6.8	12
12	Tungsten Carbide: A Remarkably Efficient Catalyst for the Selective Cleavage of Lignin Câ [°] O Bonds. ChemSusChem, 2016, 9, 3220-3229.	6.8	72