Donghui Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3859496/publications.pdf

Version: 2024-02-01

85 papers 5,238 citations

94269 37 h-index 70 g-index

89 all docs 89 docs citations

89 times ranked 5737 citing authors

#	Article	IF	CITATIONS
1	3D Printing of Ceramic Biomaterials. Engineered Regeneration, 2022, 3, 41-52.	3.0	16
2	Biodegradable Zn–Sr alloys with enhanced mechanical and biocompatibility for biomedical applications. Smart Materials in Medicine, 2022, 3, 117-127.	3.7	12
3	Applications of 3D printed chimeric DNA biomaterials. Engineered Regeneration, 2022, 3, 13-23.	3.0	2
4	Improved mechanical, degradation, and biological performances of Zn–Fe alloys as bioresorbable implants. Bioactive Materials, 2022, 17, 334-343.	8.6	7
5	Cyclic microchip assay for measurement of hundreds of functional proteins in single neurons. Nature Communications, 2022, 13, .	5.8	6
6	Cellular mechanisms of biodegradable zinc and magnesium materials on promoting angiogenesis., 2022, 139, 213023.		8
7	Designing Better Cardiovascular Stent Materials: A Learning Curve. Advanced Functional Materials, 2021, 31, .	7.8	50
8	A synthesized semiâ€aromatic copolyamaide through synergy of three different kinds of monomers: Toward high transparency, excellent heat resistance and melt flowing property. Journal of Applied Polymer Science, 2021, 138, 49678.	1.3	4
9	Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Engineered Regeneration, 2021, 2, 31-46.	3.0	29
10	Alzheimer's pathogenic mechanisms and underlying sex difference. Cellular and Molecular Life Sciences, 2021, 78, 4907-4920.	2.4	82
11	Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Materials and Design, 2021, 204, 109676.	3.3	27
12	Toward a Better Regeneration through Implantâ€Mediated Immunomodulation: Harnessing the Immune Responses. Advanced Science, 2021, 8, e2100446.	5.6	71
13	Vascular Dementia and Underlying Sex Differences. Frontiers in Aging Neuroscience, 2021, 13, 720715.	1.7	27
14	Additive manufacturing and 3D printing of metallic biomaterials. Engineered Regeneration, 2021, 2, 288-299.	3.0	27
15	Salt Preform Texturing of Absorbable Zn Substrates for Bone-Implant Applications. Jom, 2020, 72, 1902-1909.	0.9	9
16	Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230, 119641.	5.7	113
17	Blood-Brain Barrier (BBB) Permeability and Transport Measurement In Vitro and In Vivo. Methods in Molecular Biology, 2020, 2367, 105-122.	0.4	8
18	Comp34 displays potent preclinical antitumor efficacy in triple-negative breast cancer via inhibition of NUDT3-AS4, a novel oncogenic long noncoding RNA. Cell Death and Disease, 2020, 11, 1052.	2.7	11

#	Article	IF	Citations
19	Micro-/Nanotopography on Bioresorbable Zinc Dictates Cytocompatibility, Bone Cell Differentiation, and Macrophage Polarization. Nano Letters, 2020, 20, 4594-4602.	4.5	55
20	Hydrogen generating patch improves skin cell viability, migration activity, and collagen expression. Engineered Regeneration, 2020, 1, 1-5.	3.0	9
21	Hernia Mesh and Hernia Repair: A Review. Engineered Regeneration, 2020, 1, 19-33.	3.0	36
22	Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Engineered Regeneration, 2020, 1, 6-18.	3.0	70
23	Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. Materials Science and Engineering C, 2020, 110, 110738.	3.8	75
24	Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications, 2020, 11, 401.	5.8	290
25	Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. Acta Biomaterialia, 2020, 105, 290-303.	4.1	47
26	Bioactive Glasses in Orthopedic Applications. , 2020, , 557-575.		1
27	Recent Developments of Zn-based Medical Implants. , 2020, , 677-691.		0
28	Additive Manufacturing of Bioscaffolds for Bone Regeneration. , 2020, , 313-332.		0
29	Targeting of PP2Cl´By a Small Molecule C23 Inhibits High Glucose-Induced Breast Cancer Progression <i>In Vivo</i> . Antioxidants and Redox Signaling, 2019, 30, 1983-1998.	2.5	12
30	miR-5195-3p Suppresses Cell Proliferation and Induces Apoptosis by Directly Targeting NEDD9 in Osteosarcoma. Cancer Biotherapy and Radiopharmaceuticals, 2019, 34, 405-412.	0.7	7
31	Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomaterialia, 2019, 97, 23-45.	4.1	170
32	Magnesium Regulates Endothelial Barrier Functions through TRPM7, MagT1, and S1P1. Advanced Science, 2019, 6, 1901166.	5.6	44
33	PP2 \hat{Cl} inhibits p300-mediated p53 acetylation via ATM/BRCA1 pathway to impede DNA damage response in breast cancer. Science Advances, 2019, 5, eaaw8417.	4.7	13
34	Combined Tribological and Bactericidal Effect of Nanodiamonds as a Potential Lubricant for Artificial Joints. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43500-43508.	4.0	30
35	Bioactive glass coatings on metallic implants for biomedical applications. Bioactive Materials, 2019, 4, 261-270.	8.6	130
36	Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. ACS Applied Materials & Diterfaces, 2019, 11, 6809-6819.	4.0	111

#	Article	IF	CITATIONS
37	Biofunctionalization of metallic implants by calcium phosphate coatings. Bioactive Materials, 2019, 4, 196-206.	8.6	173
38	Interfacial Zinc Phosphate is the Key to Controlling Biocompatibility of Metallic Zinc Implants. Advanced Science, 2019, 6, 1900112.	5 . 6	95
39	Enhanced cytocompatibility and antibacterial property of zinc phosphate coating on biodegradable zinc materials. Acta Biomaterialia, 2019, 98, 174-185.	4.1	148
40	Fundamental Theory of Biodegradable Metalsâ€"Definition, Criteria, and Design. Advanced Functional Materials, 2019, 29, 1805402.	7.8	226
41	Enhanced Osseointegration of Zn-Mg Composites by Tuning the Release of Zn Ions with Sacrificial Mg-Rich Anode Design. ACS Biomaterials Science and Engineering, 2019, 5, 453-467.	2.6	70
42	Formation Mechanism, Corrosion Behavior, and Cytocompatibility of Microarc Oxidation Coating on Absorbable High-Purity Zinc. ACS Biomaterials Science and Engineering, 2019, 5, 487-497.	2.6	52
43	Zinc-Based Biomaterials for Regeneration and Therapy. Trends in Biotechnology, 2019, 37, 428-441.	4.9	243
44	Magnesium Reduces Blood-Brain Barrier Permeability and Regulates Amyloid-Î ² Transcytosis. Molecular Neurobiology, 2018, 55, 7118-7131.	1.9	47
45	In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomaterialia, 2018, 71, 200-214.	4.1	197
46	Bioinspired surface functionalization of metallic biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 90-105.	1.5	146
47	EMuS Muon Facility and Its Application in the Study of Magnetism. Quantum Beam Science, 2018, 2, 23.	0.6	22
48	Hydroxyapatite/Titania Composite Coatings on Biodegradable Magnesium Alloy for Enhanced Corrosion Resistance, Cytocompatibility and Antibacterial Properties. Journal of the Electrochemical Society, 2018, 165, C962-C972.	1.3	38
49	Blood-Brain Barrier Integrity and Clearance of Amyloid- \hat{l}^2 from the BBB. Advances in Experimental Medicine and Biology, 2018, 1097, 261-278.	0.8	36
50	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	5. 3	47
51	The Influence of Oscillatory Fractions on Mass Transfer of Non-Newtonian Fluid in Wavy-Walled Tubes for Pulsatile Flow. IOP Conference Series: Materials Science and Engineering, 2018, 317, 012005.	0.3	O
52	Design of imaging system for CSNS near-target beam diagnostics. Radiation Detection Technology and Methods, 2018, 2, 1.	0.4	2
53	Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. American Journal of Physiology - Cell Physiology, 2018, 314, C404-C414.	2.1	64
54	Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials, 2017, 145, 92-105.	5.7	257

#	Article	lF	CITATIONS
55	Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27453-27461.	4.0	162
56	Development of Biodegradable Zn-Based Medical Implants., 2017,, 311-329.		2
57	Calcium Phosphate Coatings for Metallic Orthopedic Biomaterials. , 2017, , 167-183.		3
58	Metabolic Syndrome, Inflammation, and Cancer. Mediators of Inflammation, 2017, 2017, 1-2.	1.4	4
59	Biphasic responses of human vascular smooth muscle cells to magnesium ion. Journal of Biomedical Materials Research - Part A, 2016, 104, 347-356.	2.1	68
60	Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells. Scientific Reports, 2016, 6, 26661.	1.6	91
61	Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review. Journal of Materials Science and Technology, 2016, 32, 815-826.	5.6	64
62	Role of membrane biophysics in Alzheimer'sââ,¬â€œrelated cell pathways. Frontiers in Neuroscience, 2015, 9, 186.	1.4	29
63	Central role for PICALM in amyloid- \hat{l}^2 blood-brain barrier transcytosis and clearance. Nature Neuroscience, 2015, 18, 978-987.	7.1	334
64	Boundary-free skeleton extraction and its evaluation in sensor networks. Wireless Networks, 2015, 21, 269-280.	2.0	4
65	Endothelial Cellular Responses to Biodegradable Metal Zinc. ACS Biomaterials Science and Engineering, 2015, 1, 1174-1182.	2.6	166
66	Sirolimus-eluting dextran and polyglutamic acid hybrid coatings on AZ31 for stent applications. Journal of Biomaterials Applications, 2015, 30, 579-588.	1.2	18
67	Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics, 2015, 7, 118-128.	1.0	83
68	Collagen Self-Assembly on Orthopedic Magnesium Biomaterials Surface and Subsequent Bone Cell Attachment. PLoS ONE, 2014, 9, e110420.	1.1	31
69	In Vitro Biocompatibility and Endothelialization of Novel Magnesium-Rare Earth Alloys for Improved Stent Applications. PLoS ONE, 2014, 9, e98674.	1.1	29
70	Endothelialization of Novel Magnesium-Rare Earth Alloys with Fluoride and Collagen Coating. International Journal of Molecular Sciences, 2014, 15, 5263-5276.	1.8	31
71	Similarities and differences in coatings for magnesium-based stents and orthopaedic implants. Journal of Orthopaedic Translation, 2014, 2, 118-130.	1.9	45
72	The Extraction and Evaluation of Skeleton in Sensor Networks. , 2013, , .		4

#	Article	IF	CITATIONS
73	Application of Mg-based alloys for cardiovascular stents. International Journal of Biomedical Engineering and Technology, 2013, 12, 382.	0.2	16
74	Bioscaffolds development for small-diameter vascular grafts. International Journal of Biomedical Engineering and Technology, 2013, 12, 113.	0.2	8
75	Energy-dependence of vibrational relaxation between highly vibrationally excited KH (X1 $\hat{1}$ ±+, $\hat{1}$ ½ \hat{a} €³=14 \hat{a} €"23) and H2, and N2. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 517-525.	2.0	6
76	Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood, 2010, 115, 4963-4972.	0.6	95
77	NAD(P)H oxidase-mediated reactive oxygen species production alters astrocyte membrane molecular order via phospholipase A2. Biochemical Journal, 2009, 421, 201-210.	1.7	39
78	Amyloid- \hat{l}^2 peptide induces temporal membrane biphasic changes in astrocytes through cytosolic phospholipase A2. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2512-2519.	1.4	34
79	Mathematical modeling of blood coagulation cascade: kinetics of intrinsic and extrinsic pathways in normal and deficient conditions. Blood Coagulation and Fibrinolysis, 2007, 18, 637-646.	0.5	20
80	Application of Molecular Rotors to the Determination of the Molecular Weight Dependence of Viscosity in Polymer Melts. Macromolecules, 2007, 40, 7730-7732.	2.2	35
81	Brownian Diffusion and Surface Kinetics of Liposome and Viral Particle Uptake by Human Lung Cancer Cells In-Vitro. Annals of Biomedical Engineering, 2006, 34, 1573-1586.	1.3	7
82	Phospholipases A2 Mediate Amyloid-beta Peptide-Induced Mitochondrial Dysfunction. Journal of Neuroscience, 2006, 26, 11111-11119.	1.7	109
83	Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. Journal of Cell Science, 2005, 118, 3695-3703.	1.2	216
84	General Synthesis of Thioxo-1,8-naphthalimides via Thioxo-1,8-naphthalic Anhydrides. Synthesis, 1999, 1999, 1109-1111.	1.2	8
85	A comparative study of in vitro biocompatibility of Zn and AZ31 for cardiovascular stent application. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0