Yvan Guindon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3859421/publications.pdf

Version: 2024-02-01

516215 610482 38 697 16 24 citations h-index g-index papers 38 38 38 406 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Use of Lewis Acids in Radical Chemistry. Chelation-Controlled Radical Reductions of Substituted \hat{l}_{\pm} -Bromo- \hat{l}_{\pm} -alkoxy Esters and Chelation-Controlled Radical Addition Reactions. Journal of Organic Chemistry, 1998, 63, 6554-6565.	1.7	57
2	Synthesis of Propionate Motifs:Â Diastereoselective Tandem Reactions Involving Anionic and Free Radical Based Processes. Journal of the American Chemical Society, 2001, 123, 8496-8501.	6.6	50
3	Intramolecular Aminyl and Iminyl Radical Additions to $\hat{i}\pm,\hat{i}^2$ -Unsaturated Esters. Diastereoselective Tandem Cyclofunctionalization and Hydrogen Transfer Reactions. Organic Letters, 2001, 3, 2293-2296.	2.4	47
4	The Exo-Cyclic Effect:Â Strategy Employingin SituDerivatization or Lewis Acid Complexation to Enhance Stereoselectivity in Hydrogen Transfer Reactions. Journal of the American Chemical Society, 1997, 119, 9289-9290.	6.6	39
5	Hydrogen and Allylation Transfer Reactions in Acyclic Free Radicals. Synlett, 1998, 1998, 213-220.	1.0	35
6	The Exocyclic Effect:  Protecting Group Strategy to Enhance Stereoselectivity in Hydrogen Transfer Reactions of Acyclic Free Radicals. Journal of Organic Chemistry, 1997, 62, 9276-9283.	1.7	31
7	Synthesis of $1\hat{a} \in ^2$, $2\hat{a} \in ^2$ - <i>cis</i> -Nucleoside Analogues: Evidence of Stereoelectronic Control for S _N 2 Reactions at the Anomeric Center of Furanosides. Journal of the American Chemical Society, 2010, 132, 12433-12439.	6.6	30
8	Cyclofunctionalization and Free-Radical-Based Hydrogen-Transfer Reactions. An Iterative Reaction Sequence Applied to the Synthesis of the C7â°'C16Subunit of Zincophorin. Journal of Organic Chemistry, 2001, 66, 5427-5437.	1.7	29
9	Synthesis of 2,3-Anti-3,4-anti and 2,3-Anti-3,4-syn Propionate Motifs:  A Diastereoselective Tandem Sequence of Mukaiyama and Free-Radical-Based Hydrogen Transfer Reactions. Organic Letters, 2002, 4, 1019-1022.	2.4	29
10	Stereopentads Derived from a Sequence of Mukaiyama Aldolization and Free Radical Reduction on α-Methyl-β-alkoxy Aldehydes: A General Strategy for Efficient Polypropionate Synthesis. Journal of Organic Chemistry, 2009, 74, 64-74.	1.7	29
11	Stereocontrol in Radical Processes through the Exocyclic Effect:  Dual Role of Triethylboron as Radical Initiator and in Situ Derivatization Agent. Organic Letters, 2001, 3, 1391-1394.	2.4	26
12	Opening of Tartrate Acetals Using Dialkylboron Bromide:Â Evidence for Stereoselectivity Downstream from Ring Fission. Journal of the American Chemical Society, 2003, 125, 428-436.	6.6	22
13	Stereocontrolled Synthesis of C1â°C17 Fragment of Narasin via a Free Radical-Based Approach. Organic Letters, 2010, 12, 36-39.	2.4	21
14	Synthesis of Tertiary and Quaternary Stereogenic Centers:Â A Diastereoselective Tandem Reaction Sequence Combining Mukaiyama and Free Radical-Based Allylation. Journal of Organic Chemistry, 2005, 70, 776-784.	1.7	19
15	A Bidirectional Approach to the Synthesis of Polypropionates: Synthesis of C1–C13 Fragment of Zincophorin and Related Isomers. Journal of Organic Chemistry, 2011, 76, 7654-7676.	1.7	19
16	Synthesis of polypropionate motifs containing the anti–anti unit. Tetrahedron Letters, 2002, 43, 7067-7071.	0.7	18
17	Diastereoselective Synthesis of C2′-Fluorinated Nucleoside Analogues Using an Acyclic Approach. Journal of Organic Chemistry, 2016, 81, 10769-10790.	1.7	18
18	Diastereoselective Hydrogenâ€Transfer Reactions: An Experimental and DFT Study. Chemistry - A European Journal, 2013, 19, 9308-9318.	1.7	16

#	Article	IF	CITATIONS
19	Diastereoselective Mukaiyama and Free Radical Processes for the Synthesis of Polypropionate Units. Organic Letters, 2004, 6, 2599-2602.	2.4	15
20	Stereoselective Quaternary Center Construction via Atom-Transfer Radical Cyclization Using Silicon Tethers on Acyclic Precursors. Organic Letters, 2009, 11, 3148-3151.	2.4	14
21	Phenylselenoethers as Precursors of Acyclic Free Radicals. Creating Tertiary and Quaternary Centers Using Free Radical-Based Intermediates. Current Organic Chemistry, 2006, 10, 1939-1961.	0.9	13
22	Total synthesis of zincophorin methyl ester. Stereocontrol ofÂ1,2-inductionÂusingÂsterically hindered enoxysilanes. Tetrahedron, 2015, 71, 709-726.	1.0	12
23	Raising the Ceiling of Diastereoselectivity in Hydrogen Transfer on Acyclic Radicals. Journal of Organic Chemistry, 2009, 74, 2438-2446.	1.7	11
24	A New Approach to Explore the Binding Space of Polysaccharide-Based Ligands: Selectin Antagonists. ACS Medicinal Chemistry Letters, 2012, 3, 1045-1049.	1.3	11
25	Diastereoselective Radical Hydrogen Transfer Reactions using N-Heterocyclic Carbene Boranes. Journal of Organic Chemistry, 2016, 81, 11427-11431.	1.7	11
26	Study of the Endocyclic versus Exocyclic C–O Bond Cleavage Pathways of α- and β-Methyl Furanosides. Journal of Organic Chemistry, 2013, 78, 2935-2946.	1.7	9
27	Dual-Face Nucleoside Scaffold Featuring a Stereogenic All-Carbon Quaternary Center. Intramolecular Silicon Tethered Group-Transfer Reaction. Organic Letters, 2014, 16, 5698-5701.	2.4	9
28	Acyclic Tethers Mimicking Subunits of Polysaccharide Ligands: Selectin Antagonists. ACS Medicinal Chemistry Letters, 2014, 5, 1054-1059.	1.3	8
29	Stereocontrolled synthesis of propionate motifs from <scp>l</scp> -lactic and <scp>l</scp> -alanine aldehydes. A DFT study of the hydrogen transfer under endocyclic control. Organic Chemistry Frontiers, 2014, 1, 974-982.	2.3	7
30	Stereodivergent Synthesis of the C1-C9 Tetrahydropyran Subunit of Zincophorin and Isomers Thereof. Synthesis, 2012, 44, 474-488.	1.2	6
31	A Study of Exocyclic Radical Reductions of Polysubstituted Tetrahydropyrans. Journal of Organic Chemistry, 2013, 78, 6075-6103.	1.7	6
32	Photoredox-Catalyzed Stereoselective Radical Reactions to Synthesize Nucleoside Analogues with a C2′-Stereogenic All-Carbon Quaternary Center. Journal of Organic Chemistry, 2019, 84, 14795-14804.	1.7	6
33	Synthesis of Sialyl Lewis ^X Glycomimetics Bearing a Bicyclic 3- <i>O</i> ,4- <i>C</i> -Fused Galactopyranoside Scaffold. Journal of Organic Chemistry, 2019, 84, 7372-7387.	1.7	6
34	Synthesis of nucleoside analogues using acyclic diastereoselective reactions. Arkivoc, 2020, 2019, 113-142.	0.3	5
35	Identification of a C3′-nitrile nucleoside analogue inhibitor of pancreatic cancer cell line growth. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126983.	1.0	5
36	Diastereoselective Synthesis of Arabino- and Ribo-like Nucleoside Analogues Bearing a Stereogenic C3′ All-Carbon Quaternary Center. Journal of Organic Chemistry, 2019, 84, 16055-16067.	1.7	3

Yvan Guindon

#	Article	IF	CITATION
37	Nucleotide Analogues Bearing a C2′ or C3′-Stereogenic All-Carbon Quaternary Center as SARS-CoV-2 RdRp Inhibitors. Molecules, 2022, 27, 564.	1.7	3
38	Diastereoselective and regioselective synthesis of adenosine thionucleoside analogues using an acyclic approach. Canadian Journal of Chemistry, 2020, 98, 466-470.	0.6	2