David Monchaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3859365/publications.pdf

Version: 2024-02-01

99 papers 6,057 citations

38 h-index 74163 75 g-index

117 all docs

117 docs citations

117 times ranked

4530 citing authors

#	Article	IF	CITATIONS
1	A hitchhiker's guide to G-quadruplex ligands. Organic and Biomolecular Chemistry, 2008, 6, 627-636.	2.8	737
2	Highly Efficient G-Quadruplex Recognition by Bisquinolinium Compounds. Journal of the American Chemical Society, 2007, 129, 1856-1857.	13.7	386
3	Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17347-17352.	7.1	265
4	Ligands playing musical chairs with G-quadruplex DNA: A rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie, 2008, 90, 1207-1223.	2.6	245
5	Visualization of RNA-Quadruplexes in Live Cells. Journal of the American Chemical Society, 2015, 137, 8521-8525.	13.7	217
6	Caffeine-Based Gold(I) <i>N</i> -Heterocyclic Carbenes as Possible Anticancer Agents: Synthesis and Biological Properties. Inorganic Chemistry, 2014, 53, 2296-2303.	4.0	196
7	Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4842-4845.	2.2	192
8	Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nature Communications, 2018, 9, 4730.	12.8	171
9	Engineering Bisquinolinium/Thiazole Orange Conjugates for Fluorescent Sensing of Gâ€Quadruplex DNA. Angewandte Chemie - International Edition, 2009, 48, 2188-2191.	13.8	158
10	Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Research, 2012, 40, 8759-8772.	14.5	140
11	The importance of metal geometry in the recognition of G-quadruplex-DNA by metal-terpyridine complexes. Organic and Biomolecular Chemistry, 2007, 5, 2555.	2.8	125
12	A Metalâ€Mediated Conformational Switch Controls Gâ€Quadruplex Binding Affinity. Angewandte Chemie - International Edition, 2008, 47, 4858-4861.	13.8	124
13	G-Quadruplex Recognition by Quinacridines: a SAR, NMR, and Biological Study. ChemMedChem, 2007, 2, 655-666.	3. 2	107
14	Rudimentary G-quadruplex–based telomere capping in Saccharomyces cerevisiae. Nature Structural and Molecular Biology, 2011, 18, 478-485.	8.2	107
15	Deciphering the DNAzyme Activity of Multimeric Quadruplexes: Insights into Their Actual Role in the Telomerase Activity Evaluation Assay. Journal of the American Chemical Society, 2011, 133, 20405-20415.	13.7	102
16	A Twice-As-Smart Synthetic G-Quartet: PyroTASQ Is Both a Smart Quadruplex Ligand and a Smart Fluorescent Probe. Journal of the American Chemical Society, 2014, 136, 12406-12414.	13.7	98
17	An Acyclic Oligoheteroaryle That Discriminates Strongly between Diverse Gâ€Quadruplex Topologies. Angewandte Chemie - International Edition, 2011, 50, 8745-8749.	13.8	92
18	Applications of guanine quartets in nanotechnology and chemical biology. Nature Reviews Chemistry, 2019, 3, 650-668.	30.2	91

#	Article	IF	Citations
19	A Thermophilic Tetramolecular Gâ€Quadruplex/Hemin DNAzyme. Angewandte Chemie - International Edition, 2017, 56, 16636-16640.	13.8	89
20	A Model of Smart G-Quadruplex Ligand. Journal of the American Chemical Society, 2013, 135, 550-553.	13.7	86
21	A platinum–quinacridine hybrid as a G-quadruplex ligand. Journal of Biological Inorganic Chemistry, 2007, 12, 1003-1014.	2.6	80
22	Exclusive platination of loop adenines in the human telomeric G-quadruplex. Organic and Biomolecular Chemistry, 2009, 7, 2864.	2.8	78
23	Large-Scale Synthesis and Resolution of TRISPHAT [Tris(tetrachlorobenzenediolato) Phosphate(V)] Anion. Journal of Organic Chemistry, 2004, 69, 8521-8524.	3.2	75
24	Thiazole Orange: A Useful Probe for Fluorescence Sensing of G-Quadruplex–Ligand Interactions. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1585-1588.	1.1	69
25	Direct visualization of both DNA and RNA quadruplexes in human cells via an uncommon spectroscopic method. Scientific Reports, 2016, 6, 32141.	3.3	67
26	FRET Templated by G-Quadruplex DNA:Â A Specific Ternary Interaction Using an Original Pair of Donor/Acceptor Partners. Journal of the American Chemical Society, 2006, 128, 11890-11893.	13.7	66
27	Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. ELife, 2020, 9, .	6.0	60
28	Effect of the medium on the oxaziridinium-catalyzed enantioselective epoxidation. Tetrahedron Letters, 2002, 43, 8257-8260.	1.4	59
29	<i>Plasmodium</i> Telomeric Sequences: Structure, Stability and Quadruplex Targeting by Small Compounds. ChemBioChem, 2008, 9, 2730-2739.	2.6	59
30	" <i>One Ring to Bind Them All</i> àêê€"Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition. Journal of Nucleic Acids, 2010, 2010, 1-19.	1.2	59
31	Templateâ€Assembled Synthetic Gâ€Quadruplex (TASQ): A Useful System for Investigating the Interactions of Ligands with Constrained Quadruplex Topologies. Chemistry - A European Journal, 2010, 16, 6106-6114.	3.3	57
32	DOTASQ as a prototype of nature-inspired G-quadruplex ligand. Chemical Communications, 2011, 47, 4992.	4.1	56
33	Biphasic Enantioselective Olefin Epoxidation Using Tropos Dibenzoazepinium Catalysts. Journal of Organic Chemistry, 2005, 70, 5903-5911.	3.2	54
34	How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes. ACS Catalysis, 2018, 8, 11352-11361.	11.2	54
35	Ion-Pair-Mediated Asymmetric Synthesis of a Configurationally Stable Mononuclear Tris(diimine)-Iron(II) Complex. Angewandte Chemie - International Edition, 2002, 41, 2317-2319.	13.8	46
36	The G-Quadruplex-Specific RNA Helicase DHX36 Regulates p53 Pre-mRNA 3′-End Processing Following UV-Induced DNA Damage. Journal of Molecular Biology, 2017, 429, 3121-3131.	4.2	46

#	Article	IF	CITATIONS
37	Identifying G-Quadruplex-DNA-Disrupting Small Molecules. Journal of the American Chemical Society, 2021, 143, 12567-12577.	13.7	44
38	TRISPHAT Anion. An Efficient NMR Chiral Shift Counterion for Cationic Tricarbonyl Manganese Complexes with Planar Chirality. Organometallics, 2001, 20, 4107-4110.	2.3	43
39	Small-molecule affinity capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol. Nucleic Acids Research, 2019, 47, 5502-5510.	14.5	43
40	TRISPHAT salts. Efficient NMR chiral shift and resolving agents for substituted cyclometallated ruthenium bis(diimine) complexes. Journal of Organometallic Chemistry, 2001, 624, 388-391.	1.8	42
41	Assessing the Differential Affinity of Small Molecules for Noncanonical DNA Structures. ChemBioChem, 2012, 13, 1905-1912.	2.6	42
42	How to untie G-quadruplex knots and why?. Cell Chemical Biology, 2021, 28, 436-455.	5.2	42
43	Recognition of Gâ€Quadruplex DNA by Triangular Starâ€Shaped Compounds: With or Without Side Chains?. Chemistry - A European Journal, 2011, 17, 4529-4539.	3.3	40
44	DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chemical Biology, 2021, 2, 47-76.	4.1	39
45	Harnessing Nature's Insights: Synthetic Small Molecules with Peroxidaseâ€Mimicking DNAzyme Properties. Chemistry - A European Journal, 2011, 17, 10857-10862.	3.3	37
46	Inhibition of Dicing of Guanosineâ€Rich shRNAs by Quadruplexâ€Binding Compounds. ChemBioChem, 2008, 9, 2722-2729.	2.6	34
47	DNA Junction Ligands Trigger DNA Damage and Are Synthetic Lethal with DNA Repair Inhibitors in Cancer Cells. Journal of the American Chemical Society, 2020, 142, 424-435.	13.7	34
48	Configurational ordering of a cationic dinuclear triple helicate by chiral TRISPHAT anions. Chemical Communications, 2001, , 2302.	4.1	33
49	" <i>One Ring to Bind Them All</i> à€â€"Part II: Identification of Promising G-Quadruplex Ligands by Screening of Cyclophane-Type Macrocycles. Journal of Nucleic Acids, 2010, 2010, 1-11.	1.2	33
50	G-quadruplexes mark alternative lengthening of telomeres. NAR Cancer, 2021, 3, zcab031.	3.1	33
51	G4-FID: A Fluorescent DNA Probe Displacement Assay for Rapid Evaluation of Quadruplex Ligands. Methods in Molecular Biology, 2010, 608, 257-271.	0.9	29
52	Multitasking Waterâ€Soluble Synthetic Gâ€Quartets: From Preferential RNA–Quadruplex Interaction to Biocatalytic Activity. Chemistry - A European Journal, 2013, 19, 12739-12747.	3.3	29
53	Synthesis and evaluation of fused bispyrimidinoacridines as novel pentacyclic analogues of quadruplex-binder BRACO-19. Organic and Biomolecular Chemistry, 2009, 7, 5219.	2.8	28
54	Porphyrin-templated synthetic G-quartet (PorphySQ): a second prototype of G-quartet-based G-quadruplex ligand. Organic and Biomolecular Chemistry, 2012, 10, 5212.	2.8	28

#	Article	IF	Citations
55	Efficient Biocatalytic System for Biosensing by Combining Metal–Organic Framework (MOF)-Based Nanozymes and G-Quadruplex (G4)-DNAzymes. Analytical Chemistry, 2022, 94, 7295-7302.	6.5	28
56	Identification of Three-Way DNA Junction Ligands through Screening of Chemical Libraries and Validation by Complementary in Vitro Assays. Journal of Medicinal Chemistry, 2019, 62, 4456-4466.	6.4	25
57	Selective Luminescent Labeling of DNA and RNA Quadruplexes by Ï€â€Extended Ruthenium Lightâ€Up Probes. Chemistry - A European Journal, 2017, 23, 4967-4972.	3.3	24
58	The noncovalent dimerization of a G-quadruplex/hemin DNAzyme improves its biocatalytic properties. Chemical Science, 2020, 11, 8846-8853.	7.4	24
59	Regulation of autophagy by DNA G-quadruplexes. Autophagy, 2020, 16, 2252-2259.	9.1	24
60	Genome-wide characterization of i-motifs and their potential roles in the stability and evolution of transposable elements in rice. Nucleic Acids Research, 2022, 50, 3226-3238.	14.5	24
61	Cationic azacryptands as selective three-way DNA junction binding agents. Organic and Biomolecular Chemistry, 2015, 13, 215-222.	2.8	22
62	Epigenomic features of DNA G-quadruplexes and their roles in regulating rice gene transcription. Plant Physiology, 2022, 188, 1632-1648.	4.8	22
63	Identifying three-way DNA junction-specific small-molecules. Biochimie, 2012, 94, 442-450.	2.6	20
64	Porphyrinâ€Based Design of Bioinspired Multitarget Quadruplex Ligands. ChemMedChem, 2014, 9, 2035-2039.	3.2	19
65	A Thermophilic Tetramolecular Gâ€Quadruplex/Hemin DNAzyme. Angewandte Chemie, 2017, 129, 16863-16867.	2.0	19
66	Insights into G-Quadruplex–Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. Journal of Chemical Theory and Computation, 2021, 17, 1883-1899.	5.3	19
67	Real-time and quantitative fluorescent live-cell imaging with quadruplex-specific red-edge probe (G4-REP). Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1312-1320.	2.4	18
68	An oxidatively damaged G-quadruplex/hemin DNAzyme. Chemical Communications, 2020, 56, 1839-1842.	4.1	18
69	Global mapping of RNA G-quadruplexes (G4-RNAs) using G4RP-seq. Nature Protocols, 2022, 17, 870-889.	12.0	17
70	TWJ-Screen: an isothermal screening assay to assess ligand/DNA junction interactions in vitro. Nucleic Acids Research, 2018, 46, e16-e16.	14.5	16
71	Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells. Nucleic Acids Research, 2021, 49, 10275-10288.	14.5	15
72	Carbon nanotube – Protamine hybrid: Evaluation of DNA cell penetration. Carbon, 2016, 96, 742-752.	10.3	14

#	Article	IF	CITATIONS
73	Synthesis, Enantiomeric Conformations, and Stereodynamics of Aromatic ortho-Substituted Disulfones. Organic Letters, 2001, 3, 1407-1410.	4.6	13
74	Surface-promoted aggregation of amphiphilic quadruplex ligands drives their selectivity for alternative DNA structures. Organic and Biomolecular Chemistry, 2015, 13, 7034-7039.	2.8	13
75	The Scope of Application of Macrocyclic Polyamines Beyond Metal Chelation. European Journal of Organic Chemistry, 2019, 2019, 6146-6157.	2.4	13
76	Closer to nature: an ATP-driven bioinspired catalytic oxidation process. Chemical Communications, 2013, 49, 1500.	4.1	12
77	Synthesis, Enantiomeric Conformations, and Stereodynamics of Aromaticortho-Substituted Disulfones. Helvetica Chimica Acta, 2003, 86, 65-81.	1.6	11
78	New platinum(II) complexes targeting the loops of the human telomeric G-quadruplex Nucleic Acids Symposium Series, 2008, 52, 163-164.	0.3	11
79	Surface-immobilized DNAzyme-type biocatalysis. Nanoscale, 2014, 6, 2693.	5.6	11
80	Computational understanding and experimental characterization of twice-as-smart quadruplex ligands as chemical sensors of bacterial nucleotide second messengers. Scientific Reports, 2016, 6, 33888.	3.3	11
81	Improved performances of catalytic G-quadruplexes (G4-DNAzymes) via the chemical modifications of the DNA backbone to provide G-quadruplexes with double 3′-external G-quartets. International Journal of Biological Macromolecules, 2020, 151, 976-983.	7.5	11
82	Biomimetic, Smart, and Multivalent Ligands for G-Quadruplex Isolation and Bioorthogonal Imaging. ACS Chemical Biology, 2021, 16, 905-914.	3.4	11
83	DNA structure-specific sensitization of a metalloporphyrin leads to an efficient in vitro quadruplex detection molecular tool. New Journal of Chemistry, 2016, 40, 5683-5689.	2.8	10
84	Differential responses of neurons, astrocytes, and microglia to G-quadruplex stabilization. Aging, 2021, 13, 15917-15941.	3.1	9
85	A Push–Pull Mechanism Helps Design Highly Competent G-Quadruplex-DNA Catalysts. CCS Chemistry, 2021, 3, 2183-2193.	7.8	9
86	Quadruplex detection in human cells. Annual Reports in Medicinal Chemistry, 2020, 54, 133-160.	0.9	8
87	Targeting a G-quadruplex from let-7e pre-miRNA with small molecules and nucleolin. Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114757.	2.8	7
88	Beneficial Effect of Mukaiyama Reagent on Macrobislactamization Reactions. Synlett, 2006, 2006, 3423-3426.	1.8	6
89	Red Wine Extract Inhibits VEGF Secretion and Its Signaling Pathway in Retinal ARPE-19 Cells to Potentially Disrupt AMD. Molecules, 2020, 25, 5564.	3.8	6
90	Click-Chemistry-Based Biomimetic Ligands Efficiently Capture G-Quadruplexes <i>In Vitro</i> and Help Localize Them at DNA Damage Sites in Human Cells. Jacs Au, 2022, 2, 1588-1595.	7.9	6

#	Article	IF	CITATIONS
91	Biological Relevance & Therapeutic Applications of DNA- & PRICATION OF THE BIOLOGICAL RELEASE.		5
92	Synthetic G-Quartets as Versatile Nanotools for the Luminescent Detection of G-Quadruplexes. Chimia, 2015, 69, 530.	0.6	4
93	Prefolded Synthetic Gâ€Quartets Display Enhanced Bioinspired Properties. Chemistry - A European Journal, 2016, 22, 1760-1767.	3.3	3
94	Cellular Detection of Gâ€Quadruplexes by Optical Imaging Methods. Current Protocols in Cell Biology, 2018, 76, 4.33.1-4.33.19.	2.3	3
95	Omics studies of DNA G-/C-quadruplexes in plants. Trends in Genetics, 2022, 38, 999-1002.	6.7	3
96	The catalytic properties of DNA G-quadruplexes rely on their structural integrity. Chinese Journal of Catalysis, 2021, 42, 1102-1107.	14.0	2
97	Oligonucleotides in Sensing and Diagnostic Applications. , 2015, , 137-246.		0
98	2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. ChemBioChem, 2019, 20, 968-973.	2.6	0
99	Customized fused aromatics for structural recognition of nucleic acids. , 2005, , .		O