
Jau-Shyong Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3859327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience, 2007, 8, 57-69.	4.9	3,477
2	Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 2007, 55, 453-462.	2.5	1,778
3	Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology, 2005, 76, 77-98.	2.8	1,350
4	Aggregated αâ€synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB Journal, 2005, 19, 533-542.	0.2	1,065
5	Role of Microglia in Inflammation-Mediated Neurodegenerative Diseases: Mechanisms and Strategies for Therapeutic Intervention. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1-7.	1.3	1,019
6	Regional Difference in Susceptibility to Lipopolysaccharide-Induced Neurotoxicity in the Rat Brain: Role of Microglia. Journal of Neuroscience, 2000, 20, 6309-6316.	1.7	801
7	Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends in Immunology, 2008, 29, 357-365.	2.9	691
8	Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. Journal of Neurochemistry, 2002, 81, 1285-1297.	2.1	614
9	Histone Deacetylase Inhibitors Exhibit Anti-Inflammatory and Neuroprotective Effects in a Rat Permanent Ischemic Model of Stroke: Multiple Mechanisms of Action. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 892-901.	1.3	511
10	NADPH Oxidase Mediates Lipopolysaccharide-induced Neurotoxicity and Proinflammatory Gene Expression in Activated Microglia. Journal of Biological Chemistry, 2004, 279, 1415-1421.	1.6	510
11	Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. Journal of Neuroinflammation, 2008, 5, 10.	3.1	437
12	Distinct Role for Microglia in Rotenone-Induced Degeneration of Dopaminergic Neurons. Journal of Neuroscience, 2002, 22, 782-790.	1.7	408
13	Role of Nitric Oxide in Inflammationâ€Mediated Neurodegeneration. Annals of the New York Academy of Sciences, 2002, 962, 318-331.	1.8	395
14	Role of oxidative stress in epileptic seizures. Neurochemistry International, 2011, 59, 122-137.	1.9	335
15	Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB Journal, 2004, 18, 1618-1620.	0.2	320
16	Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Molecular Psychiatry, 2006, 11, 1116-1125.	4.1	317
17	Critical Role for Microglial NADPH Oxidase in Rotenone-Induced Degeneration of Dopaminergic Neurons. Journal of Neuroscience, 2003, 23, 6181-6187.	1.7	314
18	Regional distribution of leu and met enkephalin in rat brain. Neuropharmacology, 1977, 16, 303-307.	2.0	308

#	Article	IF	CITATIONS
19	HMGB1 Acts on Microglia Mac1 to Mediate Chronic Neuroinflammation That Drives Progressive Neurodegeneration. Journal of Neuroscience, 2011, 31, 1081-1092.	1.7	305
20	Novel anti-inflammatory therapy for Parkinson's disease. Trends in Pharmacological Sciences, 2003, 24, 395-401.	4.0	303
21	Neuroinflammation and α-Synuclein Dysfunction Potentiate Each Other, Driving Chronic Progression of Neurodegeneration in a Mouse Model of Parkinson's Disease. Environmental Health Perspectives, 2011, 119, 807-814.	2.8	291
22	Determination of methionine enkephalin in discrete regions of rat brain. Brain Research, 1977, 134, 383-386.	1.1	285
23	Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. Journal of Neurochemistry, 2002, 83, 973-983.	2.1	284
24	Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochemical Society Transactions, 2007, 35, 1127-1132.	1.6	279
25	Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. Journal of Neural Transmission, 2010, 117, 971-979.	1.4	266
26	Critical role of microglial NADPH oxidaseâ€derived free radicals in the in vitro MPTP model of Parkinson's disease. FASEB Journal, 2003, 17, 1-22.	0.2	263
27	Projections of substance P containing neurons from neostriatum to substantia nigra. Brain Research, 1977, 122, 541-544.	1.1	255
28	Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. International Journal of Neuropsychopharmacology, 2008, 11, 1123.	1.0	254
29	Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. Journal of Neurochemistry, 2001, 77, 182-189.	2.1	252
30	Astrogliosis in CNS Pathologies: Is There A Role for Microglia?. Molecular Neurobiology, 2010, 41, 232-241.	1.9	252
31	Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation Environmental Health Perspectives, 2003, 111, 1065-1073.	2.8	240
32	Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience, 2007, 149, 203-212.	1.1	237
33	Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and Pâ€glycoprotein upâ€regulation at the bloodâ€brain barrier. FASEB Journal, 2008, 22, 2723-2733.	0.2	222
34	Synergistic Dopaminergic Neurotoxicity of the Pesticide Rotenone and Inflammogen Lipopolysaccharide: Relevance to the Etiology of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 1228-1236.	1.7	220
35	NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Clia, 2013, 61, 855-868.	2.5	219
36	In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Movement Disorders, 2002, 17, 116-124.	2.2	210

#	Article	IF	CITATIONS
37	Neuromelanin Activates Microglia and Induces Degeneration of Dopaminergic Neurons: Implications for Progression of Parkinson's Disease. Neurotoxicity Research, 2011, 19, 63-72.	1.3	208
38	Role of reactive oxygen species in LPSâ€induced production of prostaglandin E ₂ in microglia. Journal of Neurochemistry, 2004, 88, 939-947.	2.1	206
39	Brain injury in a dish: a model for reactive gliosis. Trends in Neurosciences, 1994, 17, 138-142.	4.2	192
40	A pivotal role of matrix metalloproteinaseâ€3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB Journal, 2007, 21, 179-187.	0.2	191
41	Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation. European Journal of Neuroscience, 2002, 16, 2103-2112.	1.2	188
42	NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends in Pharmacological Sciences, 2012, 33, 295-303.	4.0	188
43	Dextromethorphan Protects Dopaminergic Neurons against Inflammation-Mediated Degeneration through Inhibition of Microglial Activation. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 212-218.	1.3	186
44	Repeated electroconvulsive shocks and the brain content of endorphins. Brain Research, 1979, 177, 273-278.	1.1	183
45	Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures. Journal of Neuroimmunology, 1998, 85, 1-10.	1.1	182
46	Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Research, 1995, 704, 112-116.	1.1	181
47	Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB Journal, 2004, 18, 589-591.	0.2	181
48	Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia, 2005, 52, 78-84.	2.5	179
49	Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions. Molecular Pharmacology, 2010, 78, 466-477.	1.0	162
50	Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1, 2, 3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neuroscience Letters, 2002, 329, 354-358.	1.0	157
51	Gene–environment interactions: Key to unraveling the mystery of Parkinson's disease. Progress in Neurobiology, 2011, 94, 1-19.	2.8	156
52	Presence of substance P and GABA in separate striatonigral neurons. Brain Research, 1977, 136, 371-375.	1.1	155
53	Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Molecular Brain Research, 2005, 134, 162-169.	2.5	155
54	Substance P content of substantia nigra after chronic treatment with antischizophrenic drugs. Neuropharmacology, 1978, 17, 83-85.	2.0	148

#	Article	IF	CITATIONS
55	Novel Neuroprotective Mechanisms of Memantine: Increase in Neurotrophic Factor Release from Astroglia and Anti-Inflammation by Preventing Microglial Activation. Neuropsychopharmacology, 2009, 34, 2344-2357.	2.8	148
56	Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia, 2007, 55, 1178-1188.	2.5	147
57	The Role of Microglia in Paraquat-Induced Dopaminergic Neurotoxicity. Antioxidants and Redox Signaling, 2005, 7, 654-661.	2.5	141
58	Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage. Brain Research, 1988, 461, 335-342.	1.1	138
59	Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. FASEB Journal, 2003, 17, 1-25.	0.2	138
60	Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 2011, 8, 121.	3.1	136
61	Chronic treatment with haloperidol accelerates the biosynthesis of enkephalins in rat striatum. Brain Research, 1979, 160, 192-195.	1.1	134
62	Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. Journal of Neuroinflammation, 2007, 4, 23.	3.1	134
63	Prolonged expression of AP-1 transcription factors in the rat hippocampus after systemic kainate treatment. Journal of Neuroscience, 1994, 14, 3998-4006.	1.7	128
64	Neonatal and Adult 6-Hydroxydopamine-Induced Lesions Differentially Alter Tachykinin and Enkephalin Gene Expression. Journal of Neurochemistry, 1987, 49, 1623-1633.	2.1	123
65	α-Synuclein, a chemoattractant, directs microglial migration via H ₂ O ₂ -dependent Lyn phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1926-35.	3.3	123
66	Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. Journal of Neural Transmission, 2005, 112, 331-347.	1.4	119
67	Andrographolide Reduces Inflammation-Mediated Dopaminergic Neurodegeneration in Mesencephalic Neuron-Glia Cultures by Inhibiting Microglial Activation. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 975-983.	1.3	117
68	Potent Anti-Inflammatory and Neuroprotective Effects of TGF-β1 Are Mediated through the Inhibition of ERK and p47 <i>phox</i> -Ser345 Phosphorylation and Translocation in Microglia. Journal of Immunology, 2008, 181, 660-668.	0.4	117
69	Kainic acid alters the metabolism of Met5-enkephalin and the level of dynorphin A in the rat hippocampus. Journal of Neuroscience, 1986, 6, 3094-3102.	1.7	116
70	Differential modulation of striatonigral dynorphin and enkephalin by dopamine receptor subtypes. Brain Research, 1990, 507, 57-64.	1.1	115
71	Changes of hippocampal Met-enkephalin content after recurrent motor seizures. Nature, 1980, 285, 231-232.	13.7	114
72	Macrophage Antigen Complex-1 Mediates Reactive Microgliosis and Progressive Dopaminergic Neurodegeneration in the MPTP Model of Parkinson's Disease. Journal of Immunology, 2008, 181, 7194-7204.	0.4	113

#	Article	IF	CITATIONS
73	Glycogen synthase kinaseâ€3 negatively regulates antiâ€inflammatory interleukinâ€10 for lipopolysaccharideâ€induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology, 2009, 128, e275-86.	2.0	113
74	Regulation of methionine-enkephalin precursor messenger RNA in rat striatum by haloperidol and lithium. Biochemical and Biophysical Research Communications, 1983, 113, 391-399.	1.0	110
75	Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells. Brain Research, 1990, 510, 277-288.	1.1	109
76	Interleukin-10 Protects Lipopolysaccharide-Induced Neurotoxicity in Primary Midbrain Cultures by Inhibiting the Function of NADPH Oxidase. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 44-52.	1.3	108
77	β2-Adrenergic Receptor Activation Prevents Rodent Dopaminergic Neurotoxicity by Inhibiting Microglia via a Novel Signaling Pathway. Journal of Immunology, 2011, 186, 4443-4454.	0.4	107
78	Reactive microgliosis: extracellular μ-calpain and microglia-mediated dopaminergic neurotoxicity. Brain, 2010, 133, 808-821.	3.7	106
79	MPP + â€induced COXâ€2 activation and subsequent dopaminergic neurodegeneration. FASEB Journal, 2005, 19, 1134-1136.	0.2	105
80	Influence of nigrostriatal dopaminergic tone on the biosynthesis of dynorphin and enkephalin in rat striatum. Molecular Brain Research, 1990, 8, 219-225.	2.5	103
81	Reflex splanchnic nerve stimulation increases levels of proenkephalin A mRNA and proenkephalin A-related peptides in the rat adrenal medulla Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9245-9249.	3.3	100
82	Elevated dynorphin in the hippocampal formation of aged rats: relation to cognitive impairment on a spatial learning task Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2948-2951.	3.3	97
83	Inhibition by Naloxone Stereoisomers of β-Amyloid Peptide (1–42)-induced Superoxide Production in Microglia and Degeneration of Cortical and Mesencephalic Neurons. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 1212-1219.	1.3	96
84	Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism and Related Disorders, 2012, 18, S213-S217.	1.1	96
85	On the locaticn of methicnine enkephalin neurons in rat striatum. Neuropharmacology, 1977, 16, 451-453.	2.0	95
86	Effects of habenular lesions on the substance P content of various brain regions. Brain Research, 1976, 118, 523-525.	1.1	93
87	MAC1 mediates LPSâ€induced production of superoxide by microglia: The role of pattern recognition receptors in dopaminergic neurotoxicity. Glia, 2007, 55, 1362-1373.	2.5	93
88	In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials, 2006, 27, 5368-5376.	5.7	92
89	ALTERATIONS IN GABA METABOLISM AND MET-ENKEPHALIN CONTENT IN RAT BRAIN FOLLOWING REPEATED ELECTROCONVULSIVE SHOCKS. Journal of Neurochemistry, 1978, 31, 607-611.	2.1	90
90	Inhibition of lκB Kinase-β Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 822-833.	1.3	90

#	Article	IF	CITATIONS
91	Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. FASEB Journal, 2005, 19, 489-496.	0.2	88
92	Potent regulation of microgliaâ€derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB Journal, 2006, 20, 251-258.	0.2	87
93	Selective Killing of Cholinergic Neurons by Microglial Activation in Basal Forebrain Mixed Neuronal/Glial Cultures. Biochemical and Biophysical Research Communications, 1995, 215, 572-577.	1.0	86
94	Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson's disease models. Brain, 2015, 138, 1247-1262.	3.7	86
95	The Effects of the HIV-1 Envelope Protein gp120 on the Production of Nitric Oxide and Proinflammatory Cytokines in Mixed Glial Cell Cultures. Cellular Immunology, 1996, 172, 77-83.	1.4	85
96	Implications of prolonged expression of Fos-related antigens. Trends in Pharmacological Sciences, 1995, 16, 317-321.	4.0	84
97	Amantadine protects dopamine neurons by a dual action: Reducing activation of microglia and inducing expression of GNDF in astroglia. Neuropharmacology, 2011, 61, 574-582.	2.0	84
98	Microglial regulation of immunological and neuroprotective functions of astroglia. Glia, 2015, 63, 118-131.	2.5	84
99	Reduction by naloxone of lipopolysaccharide-induced neurotoxicity in mouse cortical neuron–glia co-cultures. Neuroscience, 2000, 97, 749-756.	1.1	83
100	Curcumin Protects Dopaminergic Neuron Against LPS Induced Neurotoxicity in Primary Rat Neuron/Glia Culture. Neurochemical Research, 2008, 33, 2044-2053.	1.6	83
101	Dynorphin- and enkephalin-like immunoreactivity is altered in limbic- basal ganglia regions of rat brain after repeated electroconvulsive shock. Journal of Neuroscience, 1986, 6, 644-649.	1.7	82
102	Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB Journal, 2005, 19, 550-557.	0.2	81
103	Microglia-Mediated Neurotoxicity Is Inhibited by Morphine through an Opioid Receptor-Independent Reduction of NADPH Oxidase Activity. Journal of Immunology, 2007, 179, 1198-1209.	0.4	81
104	Release of immunoreactive met-enkephalin from the spinal cord by intraventricular β-endorphin but not morphine in anesthetized rats. Brain Research, 1985, 343, 60-69.	1.1	79
105	Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. Journal of Neuroinflammation, 2011, 8, 3.	3.1	78
106	3â€Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTPâ€elicited damage both in vivo and in vitro. FASEB Journal, 2006, 20, 2496-2511.	0.2	77
107	Clozapine Protects Dopaminergic Neurons from Inflammation-Induced Damage by Inhibiting Microglial Overactivation. Journal of NeuroImmune Pharmacology, 2012, 7, 187-201.	2.1	77
108	CD11b/CD18 (Mac-1) Is a Novel Surface Receptor for Extracellular Double-Stranded RNA To Mediate Cellular Inflammatory Responses. Journal of Immunology, 2013, 190, 115-125.	0.4	76

#	Article	IF	CITATIONS
109	Opioids induce convulsions and wet dog shakes in rats: mediation by hippocampal mu, but not delta or kappa opioid receptors. Journal of Neuroscience, 1989, 9, 692-697.	1.7	75
110	Systemic administration of kainic acid differentially regulates the levels of prodynorphin and proenkephalin mRNA and peptides in the rat hippocampus. Molecular Brain Research, 1991, 9, 79-86.	2.5	75
111	Transcriptional Factor NF- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>κ</mml:mi>B as a Target for Therapy in Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-8.</mml:math 	0.6	75
112	Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. Journal of Neuroinflammation, 2016, 13, 12.	3.1	75
113	Regulation of the concentration of dynorphin A1–8 in the striatonigral pathway by the dopaminergic system. Brain Research, 1986, 398, 390-392.	1.1	74
114	The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. Journal of Neuroinflammation, 2019, 16, 255.	3.1	74
115	Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells. Free Radical Biology and Medicine, 2014, 73, 51-59.	1.3	73
116	Amygdaloid kindling increases enkephalin-like immunoreactivity but decreases dynorphin-A-like immunoreactivity in rat hippocampus. Neuroscience Letters, 1986, 71, 31-36.	1.0	71
117	Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) 38 and PACAP4–6 Are Neuroprotective through Inhibition of NADPH Oxidase: Potent Regulators of Microglia-Mediated Oxidative Stress. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 595-603.	1.3	71
118	Induction of NF-kB-like transcription factors in brain areas susceptible to kainate toxicity. Glia, 1996, 16, 306-315.	2.5	70
119	A novel effect of an opioid receptor antagonist, naloxone, on the production of reactive oxygen species by microglia: a study by electron paramagnetic resonance spectroscopy. Brain Research, 2000, 854, 224-229.	1.1	70
120	Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase. Journal of Neuroscience, 2014, 34, 12490-12503.	1.7	70
121	Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson's disease model. Journal of Neuroinflammation, 2021, 18, 4.	3.1	70
122	Enkephalin in bovine adrenal gland: Multiple molecular forms of [met5]-enkephalin immunoreactive peptides. Neuropharmacology, 1980, 19, 209-215.	2.0	69
123	Cadmium-Induced Toxicity in Rat Primary Mid-brain Neuroglia Cultures: Role of Oxidative Stress from Microglia. Toxicological Sciences, 2007, 98, 488-494.	1.4	69
124	Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits. NeuroToxicology, 2008, 29, 864-870.	1.4	69
125	Heightened transcription for enzymes involved in norepinephrine biosynthesis in the rat locus coeruleus by immobilization stress. Biological Psychiatry, 1999, 45, 853-862.	0.7	68
126	Research on the Premotor Symptoms of Parkinson's Disease: Clinical and Etiological Implications. Environmental Health Perspectives, 2013, 121, 1245-1252.	2.8	68

#	Article	IF	CITATIONS
127	Role and Mechanism of Microglial Activation in Iron-Induced Selective and Progressive Dopaminergic Neurodegeneration. Molecular Neurobiology, 2014, 49, 1153-1165.	1.9	67
128	Protein tyrosine kinase inhibitors suppress the production of nitric oxide in mixed glia, microglia-enriched or astrocyte-enriched cultures. Brain Research, 1996, 729, 102-109.	1.1	65
129	3â€Hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPSâ€induced neurotoxicity. FASEB Journal, 2005, 19, 1-25.	0.2	65
130	Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. Journal of Neuroinflammation, 2012, 9, 124.	3.1	65
131	Low-Dose Memantine Attenuated Morphine Addictive Behavior Through its Anti-Inflammation and Neurotrophic Effects in Rats. Journal of NeuroImmune Pharmacology, 2012, 7, 444-453.	2.1	64
132	Kainate-Induced Changes in Opioid Peptide Genes and AP-1 Protein Expression in the Rat Hippocampus. Journal of Neurochemistry, 1993, 60, 204-211.	2.1	63
133	Pharmacological regulation of APâ€1 transcription factor DNA binding activity 1. FASEB Journal, 1994, 8, 475-478.	0.2	63
134	A single dose of kainic acid elevates the levels of enkephalins and activator protein-1 transcription factors in the hippocampus for up to 1 year. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9422-9427.	3.3	62
135	Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxinâ€induced damage. British Journal of Pharmacology, 2012, 165, 494-505.	2.7	62
136	Single or repeated electroconvulsive shocks alter the levels of prodynorphin and proenkephalin mRNAs in rat brain. Molecular Brain Research, 1989, 6, 11-19.	2.5	61
137	Relationship between hippocampal opioid peptides and seizures. Progress in Neurobiology, 1993, 40, 507-528.	2.8	61
138	Influence of neurons on lipopolysaccharide-stimulated production of nitric oxide and tumor necrosis factor-1± by cultured glia. Brain Research, 2000, 853, 236-244.	1.1	61
139	The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Reports, 2017, 20, 2169-2183.	2.9	61
140	A novel role of NLRP3-generated IL-1β in the acute-chronic transition of peripheral lipopolysaccharide-elicited neuroinflammation: implications for sepsis-associated neurodegeneration. Journal of Neuroinflammation, 2020, 17, 64.	3.1	60
141	Marked Reduction in Gonadal Steroid Hormone Levels in Rats Treated Neonatally with Monosodium <i>L</i> -Glutamate: Further Evidence for Disruption of Hypothalamic-Pituitary-Gonadal Axis Regulation. Neuroendocrinology, 1981, 33, 265-267.	1.2	58
142	Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Current Opinion in Pharmacology, 2016, 26, 54-60.	1.7	58
143	Regulation of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA levels in the sympathoadrenal system by the pituitary-adrenocortical axis. Molecular Brain Research, 1988, 3, 275-286.	2.5	56
144	Repeated haloperidol administration changes basal release of striatal dopamine and subsequent response to haloperidol challenge. Brain Research, 1989, 484, 389-392.	1.1	56

#	Article	IF	CITATIONS
145	Neurons reduce glial responses to lipopolysaccharide (LPS) and prevent injury of microglial cells from over-activation by LPS. Journal of Neurochemistry, 2001, 76, 1042-1049.	2.1	56
146	p38 MAP Kinase Is Involved in Lipopolysaccharideâ€Induced Dopaminergic Neuronal Cell Death in Rat Mesencephalic Neuronâ€Glia Cultures. Annals of the New York Academy of Sciences, 2002, 962, 332-346.	1.8	56
147	Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia, 2006, 53, 567-582.	2.5	56
148	Verapamil protects dopaminergic neuron damage through a novel anti-inflammatory mechanism by inhibition of microglial activation. Neuropharmacology, 2011, 60, 373-380.	2.0	56
149	Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91 phox subunit of NADPH oxidase. Journal of Neuroinflammation, 2012, 9, 32.	3.1	56
150	Effect of acrylamide on neurotransmitter metabolism and neuropeptide levels in several brain regions and upon circulating hormones. Archives of Toxicology, 1983, 52, 35-43.	1.9	55
151	Time-dependent neurobiological effects of colchicine administered directly into the hippocampus of rats. Brain Research, 1987, 408, 163-172.	1.1	55
152	Suppressed pro-inflammatory response of microglia in CX3CR1 knockout mice. Journal of Neuroimmunology, 2013, 257, 110-115.	1.1	55
153	Liposomal melatonin rescues methamphetamineâ€elicited mitochondrial burdens, proâ€apoptosis, and dopaminergic degeneration through the inhibition PKCδgene. Journal of Pineal Research, 2015, 58, 86-106.	3.4	55
154	NADPH oxidase-derived H2O2 mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson's disease. Redox Biology, 2017, 12, 162-170.	3.9	54
155	Changes of hippocampal Cu/Zn-superoxide dismutase after kainate treatment in the rat. Brain Research, 2000, 853, 215-226.	1.1	53
156	Protective effect of dextromethorphan against endotoxic shock in mice. Biochemical Pharmacology, 2005, 69, 233-240.	2.0	53
157	Low-Dose Lipopolysaccharide Selectively Sensitizes Hypoxic Ischemia-Induced White Matter Injury in the Immature Brain. Pediatric Research, 2010, 68, 41-47.	1.1	53
158	A novel role of microglial <scp>NADPH</scp> oxidase in mediating extraâ€synaptic function of norepinephrine in regulating brain immune homeostasis. Glia, 2015, 63, 1057-1072.	2.5	53
159	Extracellular concentrations of amino acid transmitters in ventral hippocampus during and after the development of kindling. Brain Research, 1991, 540, 315-318.	1.1	52
160	Increased enkephalin and dynorphin immunoreactivity in the hippocampus of seizure sensitive Mongolian gerbils. Brain Research, 1987, 401, 353-358.	1.1	51
161	Reduction of lipopolysaccharide-induced neurotoxicity in mixed cortical neuron/glia cultures by femtomolar concentrations of pituitary adenylate cyclase-activating polypeptide. Neuroscience, 1999, 91, 493-500.	1.1	51
162	Study of hepatotoxicity of naltrexone in the treatment of alcoholism. Alcohol, 2006, 38, 117-120.	0.8	51

#	Article	IF	CITATIONS
163	Decreased glutamate release correlates with elevated dynorphin content in the hippocampus of aged rats with spatial learning deficits. Hippocampus, 1991, 1, 391-397.	0.9	50
164	Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicology and Applied Pharmacology, 2009, 238, 64-70.	1.3	50
165	Loss of Brain Norepinephrine Elicits Neuroinflammation-Mediated Oxidative Injury and Selective Caudo-Rostral Neurodegeneration. Molecular Neurobiology, 2019, 56, 2653-2669.	1.9	50
166	The effect of kainic acid on the hippocampal content of putative transmitter amino acids. Brain Research, 1980, 200, 355-362.	1.1	49
167	Electroconvulsive shock increases preproenkephalin messenger RNA abundance in rat hypothalamus Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 589-593.	3.3	48
168	Protective effect of the SOD/catalase mimetic MnTMPyP on inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuronal-glial cultures. Journal of Neuroimmunology, 2004, 147, 68-72.	1.1	48
169	Hypertension and Diagnosis of Parkinson's Disease: A Meta-Analysis of Cohort Studies. Frontiers in Neurology, 2018, 9, 162.	1.1	48
170	NADPH oxidase inhibitor DPI is neuroprotective at femtomolar concentrations through inhibition of microglia over-activation. Parkinsonism and Related Disorders, 2007, 13, S316-S320.	1.1	47
171	Preparation of Rodent Primary Cultures for Neuron–Glia, Mixed Glia, Enriched Microglia, and Reconstituted Cultures with Microglia. Methods in Molecular Biology, 2013, 1041, 231-240.	0.4	47
172	Role of a 35 kDa fos-related antigen (FRA) in the long-term induction of striatal dynorphin expression in the 6-hydroxydopamine lesioned rat. Molecular Brain Research, 1994, 23, 191-203.	2.5	46
173	PROTEIN TYROSINE KINASE INHIBITORS DECREASE LIPOPOLYSACCHARIDE-INDUCED PROINFLAMMATORY CYTOKINE PRODUCTION IN MIXED GLIA, MICROGLIA-ENRICHED OR ASTROCYTE-ENRICHED CULTURES. Neurochemistry International, 1997, 30, 491-497.	1.9	46
174	Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radical Biology and Medicine, 2012, 52, 303-313.	1.3	46
175	Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase with high specificity and shows great potential as a therapeutic agent for neurodegenerative diseases. Glia, 2014, 62, 2034-2043.	2.5	46
176	Neonatal administration of delta-9-tetrahydrocannabinol (THC) alters the neurochemical response to stress in the adult Fischer-344 rat. Neurotoxicology and Teratology, 1987, 9, 321-327.	1.2	45
177	Changes of proenkephalin and prodynorphin mRNAs and related peptides in rat brain during the development of deep prepyriform cortex kindling. Molecular Brain Research, 1989, 6, 263-273.	2.5	45
178	Long-Term Activation of Protein Kinase C by Nicotine in Bovine Adrenal Chromaffin Cells. Journal of Neurochemistry, 1992, 58, 1652-1658.	2.1	45
179	Role of Inflammation in the Pathogenesis of Parkinson's Disease: Models, Mechanisms, and Therapeutic Interventions. Annals of the New York Academy of Sciences, 2005, 1053, 151-152.	1.8	45
180	Sex-related difference in the rat pituitary [Met5]-enkephalin level — altered by gonadectomy. Brain Research, 1982, 251, 380-383.	1.1	44

#	Article	IF	CITATIONS
181	Cerebral ischemia/reperfusion injury in rat brain: effects of naloxone. NeuroReport, 2001, 12, 1245-1249.	0.6	44
182	Low dose dextromethorphan attenuates moderate experimental autoimmune encephalomyelitis by inhibiting NOX2 and reducing peripheral immune cells infiltration in the spinal cord. Neurobiology of Disease, 2011, 44, 63-72.	2.1	44
183	Repeated electroconvulsive shock downregulates the opioid receptors in rat brain. Brain Research, 1985, 346, 160-163.	1.1	43
184	Neuroendocrine, biogenic amine and behavioral responsiveness to a repeated foot-shock-induced analgesia (FSIA) stressor in Sprague-Dawley (CD) and Fischer-344 (CDF) rats. Brain Research, 1986, 382, 71-80.	1.1	43
185	Gö6976 inhibits LPS-induced microglial TNFα release by suppressing p38 MAP kinase activation. Neuroscience, 2002, 114, 689-697.	1.1	43
186	Dextromethorphan reduces oxidative stress and inhibits atherosclerosis and neointima formation in mice. Cardiovascular Research, 2009, 82, 161-169.	1.8	43
187	Detection of two endorphin-like peptides in nucleus caudatus. Neuropharmacology, 1978, 17, 433-438.	2.0	42
188	Alteration of cerebral neurotransmitter receptor function by exposure of rats to manganese. Toxicology Letters, 1981, 9, 247-254.	0.4	42
189	Biphasic effects of chronic nicotine treatment on hypothalamic immunoreactive β-endorphin in the mouse. Pharmacology Biochemistry and Behavior, 1985, 23, 141-143.	1.3	42
190	Clozapine metabolites protect dopaminergic neurons through inhibition of microglial NADPH oxidase. Journal of Neuroinflammation, 2016, 13, 110.	3.1	42
191	Glucocorticoids potentiate kainic acid-induced seizures and wet dog shakes. Brain Research, 1989, 480, 322-325.	1.1	41
192	Modulatory effects of [Met5]-enkephalin on interleukin-1β secretion from microglia in mixed brain cell cultures. Journal of Neuroimmunology, 1995, 62, 9-17.	1.1	41
193	Formyl-methionyl-leucyl-phenylalanine–Induced Dopaminergic Neurotoxicity via Microglial Activation: A Mediator between Peripheral Infection and Neurodegeneration?. Environmental Health Perspectives, 2008, 116, 593-598.	2.8	40
194	β2 Adrenergic receptor activation induces microglial NADPH oxidase activation and dopaminergic neurotoxicity through an ERKâ€dependent/protein kinase Aâ€independent pathway. Glia, 2009, 57, 1600-1609.	2.5	40
195	The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese patients with bipolar disorder and schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 51, 99-104.	2.5	40
196	Neural and hormonal regulation of the tyrosine hydroxylase gene in adrenal medullary cells: Participation of c-fos and AP1 factors. Molecular and Cellular Neurosciences, 1990, 1, 202-213.	1.0	39
197	Regulation of tyrosine hydroxylase gene expression in depolarized non-transformed bovine adrenal medullary cells: second messenger systems and promoter mechanisms. Molecular Brain Research, 1994, 22, 309-319.	2.5	39
198	Time dependency of the action of nitric oxide in lipopolysaccharide–interferon-γ-induced neuronal cell death in murine primary neuron–glia co-cultures. Brain Research, 2000, 880, 173-177.	1.1	39

#	Article	IF	CITATIONS
199	The Effects of Add-On Low-Dose Memantine on Cytokine Levels in Bipolar II Depression. Journal of Clinical Psychopharmacology, 2014, 34, 337-343.	0.7	39
200	The Enkephalin System in the Rat Anterior Pituitary:Regulation by Gonadal Steroid Hormones and Psychotropic Drugs. Endocrinology, 1983, 113, 1218-1227.	1.4	38
201	Long-term expression of the 35,000 mol. wt fos-related antigen in rat brain after kainic acid treatment. Neuroscience, 1996, 73, 1159-1174.	1.1	38
202	Effects of p,p'-DDT on the Rat Brain Concentrations of Biogenic Amine and Amino Acid Neurotransmitters and Their Association with p,p'-DDT-Induced Tremor and Hyperthermia. Journal of Neurochemistry, 1985, 45, 1349-1355.	2.1	37
203	Ganglioside interactions with the dopaminergic system of rats. Journal of Neuroscience Research, 1988, 19, 88-93.	1.3	37
204	Regulation of prodynorphin gene expression in the hippocampus by glucocorticoids. Molecular Brain Research, 1992, 16, 150-157.	2.5	37
205	Dextromethorphan modulates the AP-1 DNA-binding activity induced by kainic acid. Brain Research, 1999, 824, 125-132.	1.1	37
206	Role of Phagocyte Oxidase in UVA-Induced Oxidative Stress and Apoptosis in Keratinocytes. Journal of Investigative Dermatology, 2005, 125, 560-566.	0.3	37
207	Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity. Journal of Neuroinflammation, 2008, 5, 21.	3.1	37
208	[Met5]Enkephalin content in brain regions of rats treated with lithium Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 2991-2993.	3.3	36
209	Dopamine-Dependent Postnatal Development of Enkephalin and Tachykinin Neurons of Rat Basal Ganglia. Journal of Neurochemistry, 1991, 56, 1499-1508.	2.1	36
210	PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radical Biology and Medicine, 2018, 115, 318-337.	1.3	36
211	Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions. Brain, Behavior, and Immunity, 2019, 81, 374-387.	2.0	36
212	Inflammation's Association with Metabolic Profiles before and after a Twelve-Week Clinical Trial in Drug-NaÃ⁻ve Patients with Bipolar II Disorder. PLoS ONE, 2013, 8, e66847.	1.1	36
213	Human neuromelanin an endogenous microglial activator for dopaminergic neuron death. Frontiers in Bioscience - Elite, 2013, E5, 1-11.	0.9	36
214	Roles of the pituitary-adrenocortical axis in control of the native and cryptic enkephalin levels and proenkephalin mRNA in the sympathoadrenal system of the rat. Molecular Brain Research, 1988, 3, 263-273.	2.5	35
215	Long-Term Activation of Protein Kinase C by Angiotensin II in Cultured Bovine Adrenal Medullary Cells. Journal of Neurochemistry, 1991, 56, 1292-1298.	2.1	35
216	Apomorphine induction of AP-1 DNA binding in the rat striatum after dopamine depletion. Molecular Brain Research, 1992, 15, 151-155.	2.5	35

#	Article	IF	CITATIONS
217	Behavior, neurochemistry and histology after intranigral lipopolysaccharide injection. NeuroReport, 2002, 13, 277-280.	0.6	35
218	Inflammation in Patients with Schizophrenia: The Therapeutic Benefits of Risperidone Plus Add-On Dextromethorphan. Journal of NeuroImmune Pharmacology, 2012, 7, 656-664.	2.1	35
219	Microglial NADPH Oxidase Mediates Leucine Enkephalin Dopaminergic Neuroprotection. Annals of the New York Academy of Sciences, 2005, 1053, 107-120.	1.8	35
220	Repeated electroconvulsive shocks alter the biosynthesis of enkephalin and concentration of dynorphin in the rat brain. Neuropeptides, 1985, 5, 557-560.	0.9	34
221	Primary Rat Mesencephalic Neuron-Glia, Neuron-Enriched, Microglia-Enriched, and Astroglia-Enriched Cultures. , 2003, 79, 387-396.		34
222	Intrahippocampal distribution of Met5-enkephalin. Brain Research, 1981, 205, 415-418.	1.1	33
223	Deep prepyriform cortex kindling differentially alters the levels of prodynorphin mRNA in rat hippocampus and striatum. Brain Research, 1989, 495, 156-160.	1.1	33
224	cDNA cloning and sequencing of Ca2+/calmodulin-dependent protein kinase IIalpha subunit and its mRNA expression in diisopropyl phosphorofluoridate (DFP)-treated hen central nervous system. Molecular and Cellular Biochemistry, 1998, 181, 29-39.	1.4	33
225	Reactive microgliosis participates in MPP + â€induced dopaminergic neurodegeneration: role of 67 kDa laminin receptor. FASEB Journal, 2006, 20, 906-915.	0.2	33
226	Locus coeruleus neurons are most sensitive to chronic neuroinflammation-induced neurodegeneration. Brain, Behavior, and Immunity, 2020, 87, 359-368.	2.0	33
227	Control protocol for robust in vitro glial scar formation around microwires: Essential roles of bFGF and serum in gliosis. Journal of Neuroscience Methods, 2009, 181, 170-177.	1.3	32
228	Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nature Reviews Neuroscience, 2010, 11, 718-726.	4.9	32
229	Chlordecone-induced tremor: Quantification and pharmacological analysis. Toxicology and Applied Pharmacology, 1982, 66, 234-243.	1.3	31
230	Lithium increases dynorphin A(1–8) and prodynorphin mRNA levels in the basal ganglia of rats. Molecular Brain Research, 1988, 3, 155-163.	2.5	31
231	High concentrations of extracellular potassium enhance bacterial endotoxin lipopolysaccharide-induced neurotoxicity in glia–neuron mixed cultures. Neuroscience, 2000, 97, 757-764.	1.1	31
232	Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals. Brain, Behavior, and Immunity, 2016, 55, 260-272.	2.0	31
233	The Differential Levels of Inflammatory Cytokines and BDNF among Bipolar Spectrum Disorders. International Journal of Neuropsychopharmacology, 2016, 19, pyw012.	1.0	30
234	Neuropsychotoxic and Neuroprotective Potentials of Dextromethorphan and Its Analogs. Journal of Pharmacological Sciences, 2011, 116, 137-148.	1.1	29

#	Article	IF	CITATIONS
235	Therapeutic effects of add-on low-dose dextromethorphan plus valproic acid in bipolar disorder. European Neuropsychopharmacology, 2014, 24, 1753-1759.	0.3	29
236	A 35 kDa Fos-related antigen is co-localized with substance P and dynorphin in striatal neurons. Brain Research, 1992, 577, 312-317.	1.1	28
237	Automated HPLC Analysis of Tissue Levels of Dopamine, Sertonin, and Several Prominent Amine Metabolites in Extracts from Various Brain Regions. Journal of Liquid Chromatography and Related Technologies, 1983, 6, 871-886.	0.9	27
238	Effects of chlordecone exposure on brain neurotransmitters: Possible involvement of the serotonin system in chlordecone-elicited tremor. Toxicology and Applied Pharmacology, 1984, 73, 336-344.	1.3	27
239	Longâ€Term Expression of Fosâ€Related Antigen and Transient Expression of ΔFosB Associated with Seizures in the Rat Hippocampus and Striatum. Journal of Neurochemistry, 1997, 68, 272-279.	2.1	27
240	A Novel Inhibitory Effect of Naloxone on MacrophageActivationandAtherosclerosisFormationinMice. Journal of the American College of Cardiology, 2006, 48, 1871-1879.	1.2	27
241	Minimally Toxic Dose of Lipopolysaccharide and α-Synuclein Oligomer Elicit Synergistic Dopaminergic Neurodegeneration: Role and Mechanism of Microglial NOX2 Activation. Molecular Neurobiology, 2018, 55, 619-632.	1.9	27
242	Regulation of pituitary and brain enkephalin systems by estrogen. Life Sciences, 1982, 31, 2181-2184.	2.0	26
243	Intrahippocampal injections of a specific μ-receptor ligand PL017 produce generalized convulsions in rats. Brain Research, 1988, 441, 381-385.	1.1	26
244	Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. Journal of Neuroinflammation, 2018, 15, 52.	3.1	26
245	Monosodium glutamate exposure in the neonate alters hypothalamic and pituitary neuropeptide levels in the adult. Regulatory Peptides, 1981, 2, 347-352.	1.9	25
246	Sex-related difference in substance P level in rat anterior pituatary: a model of neonatal imprinting by testosterone. Brain Research, 1983, 273, 362-365.	1.1	25
247	Elevated basal AP-1 DNA binding activity in developing rat brain. Molecular Brain Research, 1993, 19, 349-352.	2.5	25
248	Stereoselective action of (+)-morphine over (â^')-morphine in attenuating the (â^')-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse. European Journal of Pharmacology, 2007, 571, 145-151.	1.7	25
249	Granule cells in the ventral, but not dorsal, dentate gyrus are essential for kainic acid-induced wet dog shakes. Brain Research, 1990, 514, 167-170.	1.1	24
250	Beta-endorphin enhances the replication of neurotropic human immunodeficiency virus in fetal perivascular microglia. Journal of Neuroimmunology, 1995, 61, 97-104.	1.1	24
251	Immune modulatory effects of neural cell adhesion molecules on lipopolysaccharide-induced nitric oxide production by cultured glia. Molecular Brain Research, 2000, 81, 197-201.	2.5	24
252	PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition. Molecular Neurobiology, 2015, 52, 587-600.	1.9	24

#	Article	IF	CITATIONS
253	The indolocarbazole Gö6976 protects neurons from lipopolysaccharide/interferon-γ-induced cytotoxicity in murine neuron/glia co-cultures. Molecular Brain Research, 2000, 79, 32-44.	2.5	23
254	Low-Grade Inflammation Aggravates Rotenone Neurotoxicity and Disrupts Circadian Clock Gene Expression in Rats. Neurotoxicity Research, 2019, 35, 421-431.	1.3	23
255	Purification and Properties of the Thrombin-Like Principle of Agkistrodon acutus Venom and Its Comparison with Bovine Thrombin. Thrombosis and Haemostasis, 1971, 26, 224-234.	1.8	23
256	Effect of manganese treatment on the levels of neurotransmitters, hormones, and neuropeptides: Modulation by stress. Environmental Research, 1984, 34, 242-249.	3.7	22
257	Perforant path stimulation differentially alters prodynorphin mRNA and proenkephalin mRNA levels in the entorhinal cortex-hippocampal region. Molecular Brain Research, 1990, 7, 199-205.	2.5	22
258	PKCδ knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice. Neurochemistry International, 2016, 100, 146-158.	1.9	22
259	Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxidants and Redox Signaling, 2020, 33, 374-393.	2.5	22
260	[37] Measurement of \hat{I}^2 -endorphin and enkephalins in biological tissues and fluids. Methods in Enzymology, 1983, 103, 547-564.	0.4	21
261	On the neurotoxicity of chlordecone: A role for Î ³ -aminobutyric acid and serotonin. Brain Research, 1984, 303, 117-123.	1.1	21
262	Transcription factors in primary glial cultures: changes with neuronal interactions. Molecular Brain Research, 1996, 37, 224-230.	2.5	21
263	Long-term increase of Sp-1 transcription factors in the hippocampus after kainic acid treatment. Molecular Brain Research, 1999, 69, 144-148.	2.5	21
264	Add-on memantine to valproate treatment increased HDL-C in bipolar II disorder. Journal of Psychiatric Research, 2013, 47, 1343-1348.	1.5	21
265	Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice. Clinical Science, 2015, 129, 757-767.	1.8	21
266	Identification of a specific α-synuclein peptide (α-Syn 29-40) capable of eliciting microglial superoxide production to damage dopaminergic neurons. Journal of Neuroinflammation, 2016, 13, 158.	3.1	21
267	Studies on the possible sites of chlordecone-induced tremor in rats. Toxicology and Applied Pharmacology, 1983, 70, 382-389.	1.3	20
268	Neurotransmitter-related features of the retinal pigment epithelium. Neurochemistry International, 1983, 5, 285-290.	1.9	20
269	Stimulation of the perforant path alters hippocampal levels of opioid peptides, glutamine and GABA. Brain Research, 1987, 435, 343-347.	1.1	20
270	A glutamate antagonist blocks perforant path stimulation-induced reduction of dynorphin peptide and prodynorphin mRNA levels in rat hippocampus. Brain Research, 1991, 562, 243-250.	1.1	20

#	Article	IF	CITATIONS
271	Dopamine Stimulates [3H]Phorbol 12,13-Dibutyrate Binding in Cultured Striatal Cells. Journal of Neurochemistry, 1992, 58, 1308-1312.	2.1	20
272	Regulation of tyrosine hydroxylase in olfactory bulb cultures: selective inhibition of depolarization-induced increase by endogenous opioids. Brain Research, 1994, 658, 105-111.	1.1	20
273	DNA binding activity of CREB transcription factors during ontogeny of the central nervous system. Developmental Brain Research, 1995, 86, 242-249.	2.1	20
274	Reduction of lipopolysaccharide-induced neurotoxicity in mouse mixed cortical neuron/glia cultures by ultralow concentrations of dynorphins. Journal of Biomedical Science, 2000, 7, 241-247.	2.6	20
275	Dextromethorphan Attenuated Inflammation and Combined Opioid Use in Humans Undergoing Methadone Maintenance Treatment. Journal of NeuroImmune Pharmacology, 2012, 7, 1025-1033.	2.1	20
276	The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese heroin-dependent patients. Scientific Reports, 2015, 5, 8148.	1.6	20
277	DDT-induced tremor in rats: Effects of pharmacological agents. Psychopharmacology, 1985, 86, 426-431.	1.5	19
278	Effect of chlordecone (Kepone) on the rat brain concentration of 3-methoxy-4-hydroxyphenylglycol: Evidence for a possible involvement of the norepinephrine system in chlordecone-induced tremor. Toxicology and Applied Pharmacology, 1985, 77, 158-164.	1.3	19
279	Dextromethorphan blocks opioid peptide gene expression in the rat hippocampus induced by kainic acid. Neuropeptides, 1997, 31, 105-112.	0.9	19
280	Dextromethorphan Inhibits Activations and Functions in Dendritic Cells. Clinical and Developmental Immunology, 2013, 2013, 1-11.	3.3	19
281	Correlation of neurochemical and behavioral effects of triethyl lead chloride in rats. Toxicology and Applied Pharmacology, 1983, 69, 471-479.	1.3	18
282	Angiotensin II Receptors Are Coupled to ?-Conotoxin-Sensitive Calcium Influx in Bovine Adrenal Medullary Chromaffin Cells. Journal of Neurochemistry, 1992, 58, 1285-1291.	2.1	18
283	Characterization of the long-lasting activator protein-1 complex induced by kainic acid treatment. Brain Research, 1997, 770, 53-59.	1.1	18
284	(+)-Morphine attenuates the (â^')-morphine-produced conditioned place preference and the µ-opioid receptor-mediated dopamine increase in the posterior nucleus accumbens of the rat. European Journal of Pharmacology, 2008, 587, 147-154.	1.7	18
285	Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1Î ² Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 465.	1.8	18
286	Effect of Low Temperature on the Release of Vasopressin from the Isolated Bovine Neurohypophysis. Endocrinology, 1974, 94, 234-240.	1.4	17
287	Kainic acid as a tool to study the regulation and function of opioid peptides in the hippocampus. Toxicology, 1987, 46, 141-157.	2.0	17
288	Correlation between interleukin-6 levels and methadone maintenance therapy outcomes. Drug and Alcohol Dependence, 2019, 204, 107516.	1.6	17

#	Article	lF	CITATIONS
289	Microglial Activation Mediates Noradrenergic Locus Coeruleus Neurodegeneration via Complement Receptor 3 in a Rotenone-Induced Parkinson's Disease Mouse Model. Journal of Inflammation Research, 2021, Volume 14, 1341-1356.	1.6	17
290	5,5-Diphenylhydantoin Antagonizes Neurochemical and Behavioral Effects of p, p'-DDT but Not of Chlordecone. Journal of Neurochemistry, 1986, 47, 1870-1878.	2.1	16
291	Low-dose memantine attenuated methadone dose in opioid-dependent patients: a 12-week double-blind randomized controlled trial. Scientific Reports, 2015, 5, 10140.	1.6	16
292	A Placebo-Controlled Trial of Dextromethorphan as an Adjunct in Opioid-Dependent Patients Undergoing Methadone Maintenance Treatment. International Journal of Neuropsychopharmacology, 2015, 18, pyv008-pyv008.	1.0	16
293	Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2021, 12, 638381.	2.2	16
294	Lithium and haloperidol differentially alter the dynorphin A (1–8) and enkephalin levels in the neurointermediate lobe of rat pituitary. Neuropeptides, 1987, 10, 291-298.	0.9	15
295	High doses of aspartame have no effects on sensorimotor function or learning and memory in rats. Neurotoxicology and Teratology, 1991, 13, 27-35.	1.2	15
296	Post-transcriptional inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase by GA¶6976 in murine microglia. Molecular Brain Research, 2000, 79, 18-31.	2.5	15
297	Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. Journal of Neurochemistry, 2008, 77, 182-189.	2.1	15
298	Dextromethorphan Efficiently Increases Bactericidal Activity, Attenuates Inflammatory Responses, and Prevents Group A Streptococcal Sepsis. Antimicrobial Agents and Chemotherapy, 2011, 55, 967-973.	1.4	15
299	Comparing clinical responses and the biomarkers of BDNF and cytokines between subthreshold bipolar disorder and bipolar II disorder. Scientific Reports, 2016, 6, 27431.	1.6	15
300	Correlation of cytokines, BDNF levels, and memory function in patients with opioid use disorder undergoing methadone maintenance treatment. Drug and Alcohol Dependence, 2018, 191, 6-13.	1.6	15
301	CSF monoamine metabolites in chronic pain. Pain, 1987, 31, 189-198.	2.0	14
302	Ventral hippocampal dentate granule cell lesions enhance motor seizures but reduce wet dog shakes induced by mu opioid receptor agonist. Neuroscience, 1990, 35, 71-77.	1.1	14
303	Kainate treatment alters TGF-β3 gene expression in the rat hippocampus. Molecular Brain Research, 2002, 108, 60-70.	2.5	14
304	Gö6976 Protects Mesencephalic Neurons from Lipopolysaccharideâ€Elicited Death by Inhibiting p38 MAP Kinase Phosphorylation. Annals of the New York Academy of Sciences, 2002, 962, 347-359.	1.8	14
305	Long-term heroin use was associated with the downregulation of systemic platelets, BDNF, and TGF-Î ² 1, and it contributed to the disruption of executive function in Taiwanese Han Chinese. Drug and Alcohol Dependence, 2017, 179, 139-145.	1.6	14
306	Norepinephrine depleting toxin DSP-4 and LPS alter gut microbiota and induce neurotoxicity in α-synuclein mutant mice. Scientific Reports, 2020, 10, 15054.	1.6	14

#	Article	IF	CITATIONS
307	Soluble factor effects on glial cell reactivity at the surface of gel-coated microwires. Journal of Neuroscience Methods, 2010, 190, 180-187.	1.3	13
308	Oxidative Stress, Neuroinflammation, and Neurodegeneration. , 2014, , 81-104.		13
309	Correlation of plasma brain-derived neurotrophic factor and metabolic profiles in drug-naÃ ⁻ ve patients with bipolar II disorder after a twelve-week pharmacological intervention. Acta Psychiatrica Scandinavica, 2015, 131, 120-128.	2.2	13
310	Structural and biochemical alterations in the dorsal horn of the spinal cord caused by peripheral nerve lesions. Peptides, 1985, 6, 249-256.	1.2	12
311	Pharmacological modification of DDT-induced tremor and hyperthermia in rats: Distributional factors. Psychopharmacology, 1986, 89, 278-83.	1.5	12
312	Hippocampal levels of dynorphin A (1?8) in neonatal and 16-week-old spontaneously hypertensive rats: Comparisons with DOCA-salt hypertension. Neurochemical Research, 1990, 15, 1141-1146.	1.6	12
313	Age-Related Changes in Opioid Peptide Concentrations in Brain and Pituitary of Spontaneously Hypertensive Rats. Pharmacology, 1992, 44, 245-256.	0.9	12
314	Neuroprotective Effect of Naloxone in Infl ammation-Mediated Dopaminergic. , 2003, 79, 43-54.		12
315	Genotype variant associated with add-on memantine in bipolar II disorder. International Journal of Neuropsychopharmacology, 2014, 17, 189-197.	1.0	12
316	More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder. Psychoneuroendocrinology, 2017, 85, 42-48.	1.3	12
317	Valproate is protective against 6-OHDA-induced dopaminergic neurodegeneration in rodent midbrain: A potential role of BDNF up-regulation. Journal of the Formosan Medical Association, 2019, 118, 420-428.	0.8	12
318	Estrogen receptor α phosphorylated at Ser216 confers inflammatory function to mouse microglia. Cell Communication and Signaling, 2020, 18, 117.	2.7	12
319	Kainic acid inhibits cholecystokinin release from rat hippocampal slices. Neuroscience Letters, 1989, 100, 313-318.	1.0	11
320	Ultralow concentrations of proenkephalin and [met5]-enkephalin differentially affect IgM and IgG production by B cells. Journal of Neuroimmunology, 1997, 73, 37-46.	1.1	11
321	Kainic acid-induced sprouting of dynorphin- and enkephalin- containing mossy fibers in the dentate gyrus of the rat hippocampus. Brain Research, 1997, 747, 318-323.	1.1	11
322	Effects of the Combined Treatment of Naloxone and Indomethacin on Catecholamines and Behavior After Intranigral Lipopolysaccharide Injection. Neurochemical Research, 2004, 29, 341-346.	1.6	11
323	Ultralow doses of dextromethorphan protect mice from endotoxin-induced sepsis-like hepatotoxicity. Chemico-Biological Interactions, 2019, 303, 50-56.	1.7	11
324	Properties of renin granules isolated from rat kidney. Molecular and Cellular Endocrinology, 1976, 5, 331-337.	1.6	10

#	Article	IF	CITATIONS
325	CABA and dopamine interaction in the basal ganglia: dopaminergic supersensitivity following chronic elevation of brain Î ³ -aminobutyric acid levels. Brain Research, 1987, 412, 29-35.	1.1	10
326	Pretreatment with antiserum against dynorphin, substance P, or cholecystokinin enhances the morphine-produced anti-allodynia in the sciatic nerve ligated mice. Neuroscience Letters, 2005, 386, 46-51.	1.0	10
327	Neuroprotective and neurogenesis agent for treating bipolar II disorder: Add-on memantine to mood stabilizer works. Medical Hypotheses, 2012, 79, 280-283.	0.8	10
328	Physiological Concentration of Prostaglandin E2 Exerts Anti-inflammatory Effects by Inhibiting Microglial Production of Superoxide Through a Novel Pathway. Molecular Neurobiology, 2018, 55, 8001-8013.	1.9	10
329	Morphinan Neuroprotection: New Insight into the Therapy of Neurodegeneration. Critical Reviews in Neurobiology, 2004, 16, 271-302.	3.3	10
330	Lack of asymmetrical distribution of receptor binding sites and of neurally active peptides within rat brain. Neuroscience, 1982, 7, 2295-2298.	1.1	9
331	Regulation of the expression of proenkephalin mRNA in bovine adrenal chromaffin cells: Role of proto-oncogenes. Molecular and Cellular Neurosciences, 1992, 3, 508-517.	1.0	9
332	Effects of [Sar1] Angiotensin II on Proenkephalin Gene Expression and Secretion of [Met5]Enkephalin in Bovine Adrenal Medullary Chromaffin Cells. Journal of Neurochemistry, 1992, 59, 993-998.	2.1	9
333	The DRD3 Ser9Gly Polymorphism Predicted Metabolic Change in Drug-Naive Patients With Bipolar II Disorder. Medicine (United States), 2016, 95, e3488.	0.4	9
334	Sulfotransferase 4A1 Increases Its Expression in Mouse Neurons as They Mature. Drug Metabolism and Disposition, 2018, 46, 860-864.	1.7	9
335	A novel synthetic peptide SVHRSP attenuates dopaminergic neurodegeneration by inhibiting NADPH oxidase-mediated neuroinflammation in experimental models of Parkinson's disease. Free Radical Biology and Medicine, 2022, 188, 363-374.	1.3	9
336	Inhibition of the thrombin-like principle of Agkistrodon acutus venom by group-specific enzyme inhibitors. Toxicon, 1974, 12, 449-453.	0.8	8
337	Effects of triethyl lead on hot-plate responsiveness and biochemical properties of hippocampus. Pharmacology Biochemistry and Behavior, 1985, 22, 1007-1011.	1.3	8
338	Development of methionine-enkephalin in microdissected areas of the rabbit brain. Brain Research, 1985, 336, 73-80.	1.1	8
339	Regulation of proenkephalin expression in C6 rat glioma cells. Molecular and Cellular Neurosciences, 1992, 3, 518-528.	1.0	8
340	Expression of the Proenkephalin A Gene and [Met5]enkephalin Secretion Induced by Prostaglandin E2 in Bovine Adrenal Medullary Chromaffin Cells: Involvement of Second Messengers. Molecular and Cellular Neurosciences, 1993, 4, 113-120.	1.0	8
341	Dexamethasone and forskolin synergistically increase [Met5]enkephalin accumulation in mixed brain cell cultures. Brain Research, 1996, 730, 67-74.	1.1	8
342	Expression of the Proenkephalin A Gene and [Met ⁵]â€Enkephalin Secretion Induced by Arachidonic Acid in Bovine Adrenal Medullary Chromaffin Cells: Involvement of Second Messengers. Journal of Neurochemistry, 1995, 64, 608-613.	2.1	8

#	Article	IF	CITATIONS
343	Serumâ€Dependence of LPSâ€Induced Neurotoxicity in Rat Cortical Neurons. Annals of the New York Academy of Sciences, 2002, 962, 306-317.	1.8	8
344	Neuropsychopharmacological understanding for therapeutic application of morphinans. Archives of Pharmacal Research, 2010, 33, 1575-1587.	2.7	8
345	Low-dose add-on memantine treatment may improve cognitive performance and self-reported health conditions in opioid-dependent patients undergoing methadone-maintenance-therapy. Scientific Reports, 2015, 5, 9708.	1.6	8
346	Addâ€On Memantine Treatment for Bipolar II Disorder Comorbid with Alcohol Dependence: A 12â€Week Followâ€Up Study. Alcoholism: Clinical and Experimental Research, 2018, 42, 1044-1050.	1.4	8
347	Memory Impairment and Plasma BDNF Correlates of the BDNF Val66Met Polymorphism in Patients With Bipolar II Disorder. Frontiers in Genetics, 2018, 9, 583.	1.1	8
348	Preparation and characterization of calcium-binding and other hydrophobic proteins from synaptic membranes. Biochimica Et Biophysica Acta - Biomembranes, 1976, 443, 414-427.	1.4	7
349	Estrogen-like activity of chlordecone (Kepone) on the hypothalamo-pituitary axis: Effects on the pituitary enkephalin system. Toxicology and Applied Pharmacology, 1984, 74, 383-389.	1.3	7
350	Preferential activation of [3H]phorbol-12,13-dibutyrate binding by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) in neonatal striatal cell cultures. Brain Research, 1992, 593, 307-310.	1.1	7
351	Combination of dextromethorphan and memantine in treating bipolar spectrum disorder: a 12-week double-blind randomized clinical trial. International Journal of Bipolar Disorders, 2020, 8, 11.	0.8	7
352	Effects of Rewarming the Bovine Neurohypophysis in Vitro: Release of Vasopressin and Lactic Dehydrogenase. Endocrinology, 1974, 94, 1480-1483.	1.4	6
353	The prevention of an artifact in receptor binding assay by an improved technique. Life Sciences, 1982, 30, 1713-1720.	2.0	6
354	Response of neuropeptides and neurotransmitter binding sites in the retina and brain of the developing chick to reduced visual input. International Journal of Developmental Neuroscience, 1983, 1, 99-103.	0.7	6
355	Biphasic Generation of Diacylglycerol by Angiotensin and Phorbol Ester in Bovine Adrenal Chromaffin Cells. Biochemical and Biophysical Research Communications, 1993, 190, 181-185.	1.0	6
356	The regulation of hippocampal dynorphin by neural/neuroendocrine pathways: models for effects of aging on an opioid peptide system. Neuroscience, 1996, 70, 661-671.	1.1	6
357	Roles of Microglia in Inflammation-Mediated Neurodegeneration: Models, Mechanisms, and Therapeutic Interventions for Parkinson's Disease. Advances in Neurotoxicology, 2017, 1, 185-209.	0.7	6
358	Granule cells in the ventral dentate gyrus are essential for kainic acid-induced wet dog shakes but not those induced by precipitated abstinence in morphine-dependent rats. Brain Research, 1990, 511, 338-340.	1.1	5
359	Neural adaptation in response to chronic imipramine and electroconvulsive shock: evidence for separate mechanisms. European Journal of Pharmacology, 1991, 205, 135-143.	1.7	5
360	Effects of chronic dextromethorphan administration on the cellular immune responses in mice. Archives of Pharmacal Research, 1995, 18, 267-270.	2.7	5

#	Article	IF	CITATIONS
361	Acute repeated nicotine injections increase enkephalin and decrease AP-1 DNA binding activity in rat adrenal medulla. Molecular Brain Research, 1995, 31, 210-214.	2.5	5
362	ALDH2 polymorphism, associated with attenuating negative symptoms in patients with schizophrenia treated with add-on dextromethorphan. Journal of Psychiatric Research, 2015, 69, 50-56.	1.5	5
363	<i>TPH1</i> and <i>5-HTTLPR</i> Genes Specifically Interact in Opiate Dependence but Not in Alcohol Dependence. European Addiction Research, 2016, 22, 201-209.	1.3	5
364	Early-Released Interleukin-10 Significantly Inhibits Lipopolysaccharide-Elicited Neuroinflammation In Vitro. Cells, 2021, 10, 2173.	1.8	5
365	Effects of neonatal testosterone administration on anterior pituitary levels of Met5-enkephalin in adults rats. Brain Research, 1983, 279, 343-346.	1.1	4
366	Interactions of chlordecone (kepone) and mirex with the nicotinic acetylcholine receptor—ion channel complex. Toxicology Letters, 1986, 30, 247-251.	0.4	4
367	Effect of Chlordecone Exposure on Thermoregulation in the Rat. Pharmacology, 1986, 32, 292-300.	0.9	4
368	Effects of corticosterone on shaking and seizure behavior induced by deep prepyriform cortex kindling. Neuroscience Letters, 1987, 82, 337-342.	1.0	4
369	Opioid mu and delta receptor antagonists reduce wet dog shaking elicited by perforant path stimulation. Pharmacology Biochemistry and Behavior, 1991, 38, 801-805.	1.3	4
370	Developmental changes in rat adrenal enkephalin precursor: peptide ratio. Developmental Brain Research, 1993, 71, 75-80.	2.1	4
371	Basal expression of 35 kDa fos-related antigen in olfactory bulb. Molecular Brain Research, 1995, 34, 161-165.	2.5	4
372	<i>ALDH2</i> Gene: Its Effects on the Neuropsychological Functions in Patients with Opioid Use Disorder Undergoing Methadone Maintenance Treatment. Clinical Psychopharmacology and Neuroscience, 2020, 18, 136-144.	0.9	4
373	Further Studies on Cold-Induced Release of Vasopressin from Isolated Bovine Neurosecretory Granules. Neuroendocrinology, 1974, 16, 165-177.	1.2	3
374	Alterations in acetylcholine-induced stimulation of inositol phospholipid hydrolysis in the dorsal hippocampus of kindled rats. Neuroscience Letters, 1990, 118, 57-60.	1.0	3
375	Characterization of dynorphin-containing neurons on dissociated dentate gyrus cell cultures. Brain Research, 1992, 594, 91-98.	1.1	3
376	Chapter 10 Kainate-induced changes in gene expression in the rat hippocampus. Progress in Brain Research, 1995, 105, 105-116.	0.9	3
377	Add-on memantine may improve cognitive functions and attenuate inflammation in middle- to old-aged bipolar II disorder patients. Journal of Affective Disorders, 2021, 279, 229-238.	2.0	3
378	Impairment of an Electroconvulsive Stimulus on Reconsolidation of Memories Established by Conditioning. Chinese Journal of Physiology, 2013, 56, 44-51.	0.4	3

#	Article	IF	CITATIONS
379	Post-insult valproate treatment potentially improved functional recovery in patients with acute middle cerebral artery infarction. American Journal of Translational Research (discontinued), 2014, 6, 820-30.	0.0	3
380	Alterations in retinal neurotransmitter receptors and neuropeptides of the chick by kainic acid and acrylamide. Brain Research, 1983, 274, 115-118.	1.1	2
381	Microglial NADPH Oxidase Mediates Leucine Enkephalin Dopaminergic Neuroprotection. Annals of the New York Academy of Sciences, 2005, 1053, 107-120.	1.8	2
382	Role of Inflammation in the Pathogenesis of Parkinson's Disease. Annals of the New York Academy of Sciences, 2008, 1053, 151-152.	1.8	2
383	Seizure-Induced Alterations of Opioid Peptide and Zinc Metabolism in the Hippocampus of Rats. , 1988, , 271-287.		2
384	Dextromethorphan Protect the Valproic Acid Induced Downregulation of Neutrophils in Patients with Bipolar Disorder. Clinical Psychopharmacology and Neuroscience, 2020, 18, 145-152.	0.9	2
385	Studies of the coagulant and anticoagulant principles of formosan crotalid venoms. Toxicon, 1976, 14, 415-416.	0.8	1
386	Role of ?-Conotoxin GVIA-Sensitive Ca2+Entry in Angiotensin II-Stimulated [3H]Phorbol 12, 13-Dibutyrate Binding in Bovine Adrenal Medullary Cells. Journal of Neurochemistry, 1993, 61, 93-99.	2.1	1
387	Neuroinflammation in Neurological Dysfunction and Degeneration. , 2015, , 385-407.		1
388	Effect of memantine on C-reactive protein and lipid profiles in bipolar disorder. Journal of Affective Disorders, 2017, 221, 151-157.	2.0	1
389	Activation of the MAC1-ERK1/2-NOX2 Pathway Is Required for LPS-Induced Sustaining Reactive Microgliosis, Chronic Neuroinflammation and Neurodegeneration. Antioxidants, 2022, 11, 1202.	2.2	1
390	Cloning and expression of MP13 gene from rat hippocampus, a new factor related to guanosine triphosphate regulation. Neuroscience Letters, 2000, 296, 129-132.	1.0	0
391	Inflammation-Mediated Neurodegeneration: Models, Mechanisms, and Therapeutic Interventions for Neurodegenerative Diseases. , 2017, , 1255-1278.		0
392	Aging and Microglial Activation in Neurodegenerative Diseases. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 107-131.	0.4	0