Peng Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3859263/peng-li-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67	3,457 citations	28	58
papers		h-index	g-index
70	4,455 ext. citations	10.3	5.55
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
67	Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications <i>Bioactive Materials</i> , 2023 , 19, 198-216	16.7	4
66	Ultra-Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human-Machine Interfaces <i>Advanced Science</i> , 2022 , e2104168	₃ 13.6	22
65	Nanoagent-based theranostic strategies against human coronaviruses <i>Nano Research</i> , 2022 , 15, 1-15	10	2
64	Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces ACS Applied Bio Materials, 2022,	4.1	6
63	Multifunctional Magnetic Porous Microspheres for Highly Efficient and Recyclable Water Disinfection and Dye Removal. <i>ACS Applied Polymer Materials</i> , 2022 , 4, 1576-1585	4.3	2
62	Electroluminescencedynamic Flexible Device for High Efficient Eradication of Drug-resistant Bacteria <i>Advanced Materials</i> , 2022 , e2200334	24	1
61	Core-Cross-Linking of Polymeric Micelles by DiSubstituted -Aroylthiooximes as Linkers for Controlled HS Release <i>ACS Macro Letters</i> , 2022 , 11, 622-629	6.6	O
60	General One-Pot Method for Preparing Highly Water-Soluble and Biocompatible Photoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 55507-55516	9.5	4
59	Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. <i>Npj Flexible Electronics</i> , 2021 , 5,	10.7	5
58	Photoactivatable Nitric Oxide-Releasing Gold Nanocages for Enhanced Hyperthermia Treatment of Biofilm-Associated Infections. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 50668-50681	9.5	7
57	Multifunctional CuO-Coated Mesh for Wastewater Treatment: Effective Oil/Water Separation, Organic Contaminants Photodegradation, and Bacterial Photodynamic Inactivation. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2101179	4.6	4
56	Theranostic platforms for specific discrimination and selective killing of bacteria. <i>Acta Biomaterialia</i> , 2021 , 125, 29-40	10.8	11
55	Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. <i>Progress in Polymer Science</i> , 2021 , 116, 101389	29.6	19
54	Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. <i>Drug Delivery and Translational Research</i> , 2021 , 11, 1456-1474	6.2	3
53	Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines. <i>Journal of Materials Science and Technology</i> , 2021 , 69, 188-199	9.1	13
52	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1369-1388	5.5	13
51	Engineering poly(ionic liquid) semi-IPN hydrogels with fast antibacterial and anti-inflammatory properties for wound healing. <i>Chemical Engineering Journal</i> , 2021 , 413, 127429	14.7	10

50	Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. <i>Chemical Society Reviews</i> , 2021 , 50, 8762-8789	58.5	63
49	Antimicrobial Effect of a Novel Chitosan Derivative and Its Synergistic Effect with Antibiotics. <i>ACS Applied Materials & Applied & Appl</i>	9.5	24
48	One-step vapor deposition of fluorinated polycationic coating to fabricate antifouling and anti-infective textile against drug-resistant bacteria and viruses. <i>Chemical Engineering Journal</i> , 2021 , 418, 129368	14.7	15
47	Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes <i>ACS Applied Materials & Description</i> 13, 61669-61680	9.5	2
46	Precisely Structured Nitric-Oxide-Releasing Copolymer Brush Defeats Broad-Spectrum Catheter-Associated Biofilm Infections. <i>ACS Central Science</i> , 2020 , 6, 2031-2045	16.8	18
45	Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces. <i>ACS Applied Materials & Discompatible Surfaces</i> , 2020, 12, 18978-18986	9.5	23
44	Single-step fabrication of catechol-Epoly-L-lysine antimicrobial paint that prevents superbug infection and promotes osteoconductivity of titanium implants. <i>Chemical Engineering Journal</i> , 2020 , 396, 125240	14.7	22
43	Perspectives on Biomaterial-Associated Infection: Pathogenesis and Current Clinical Demands 2020 , 75-93		1
42	The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. <i>Research</i> , 2020 , 2020, 2016201	7.8	7
41	Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. <i>Science China Materials</i> , 2020 , 63, 316-324	7.1	14
40	Flexible and Degradable Multimodal Sensor Fabricated by Transferring Laser-Induced Porous Carbon on Starch Film. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 527-533	8.3	22
39	A multifunctional shape-adaptive and biodegradable hydrogel with hemorrhage control and broad-spectrum antimicrobial activity for wound healing. <i>Biomaterials Science</i> , 2020 , 8, 6930-6945	7.4	26
38	Synthesis of sandwich-structured silver@polydopamine@silver shells with enhanced antibacterial activities. <i>Journal of Colloid and Interface Science</i> , 2020 , 558, 47-54	9.3	19
37	Rejuvenated Photodynamic Therapy for Bacterial Infections. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900608	10.1	125
36	Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. <i>Biomaterials Science</i> , 2019 , 7, 3334-3347	7.4	29
35	Metal ions Bewing[Isoporous membranes with polystyrene-block-poly (acrylic acid) block copolymer. <i>Journal of Membrane Science</i> , 2019 , 587, 117086	9.6	17
34	Catechol cross-linked antimicrobial peptide hydrogels prevent multidrug-resistant infection in burn wounds. <i>Bioscience Reports</i> , 2019 , 39,	4.1	21
33	Design and Synthesis of Biocompatible, Hemocompatible, and Highly Selective Antimicrobial Cationic Peptidopolysaccharides via Click Chemistry. <i>Biomacromolecules</i> , 2019 , 20, 2230-2240	6.9	43

32	Biomass-Templated Fabrication of Metallic Materials for Photocatalytic and Bactericidal Applications. <i>Materials</i> , 2019 , 12,	3.5	3
31	Stable and self-healable LbL coating with antibiofilm efficacy based on alkylated polyethyleneimine micelles. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 3865-3875	7-3	17
30	Mussel-Inspired, Surface-Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900268	4.8	29
29	Mussel-Inspired Hydrogel with Potent Contact-Active Antimicrobial and Wound Healing Promoting Activities <i>ACS Applied Bio Materials</i> , 2019 , 2, 3329-3340	4.1	42
28	A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper. <i>ACS Applied Materials & Materials</i> (2019), 11, 40613-40619	9.5	75
27	Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. <i>Biomaterials Science</i> , 2019 , 8, 278-289	7.4	37
26	Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. <i>Antioxidants</i> , 2019 , 8,	7.1	47
25	Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. <i>Acta Biomaterialia</i> , 2018 , 73, 190-203	10.8	20
24	Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. <i>Biomaterials</i> , 2018 , 162, 109-122	15.6	40
23	Flexible, Degradable, and Cost-Effective Strain Sensor Fabricated by a Scalable Papermaking Procedure. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15749-15755	8.3	30
22	Hydrogel Effects Rapid Biofilm Debridement with ex situ Contact-Kill to Eliminate Multidrug Resistant Bacteria in vivo. <i>ACS Applied Materials & Description (Materials & Description)</i> 10, 20356-20367	9.5	34
21	Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601173	10.1	73
20	Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. <i>Acta Biomaterialia</i> , 2017 , 51, 112-124	10.8	120
19	Cationic peptidopolysaccharides synthesized by ElickEhemistry with enhanced broad-spectrum antimicrobial activities. <i>Polymer Chemistry</i> , 2017 , 8, 3788-3800	4.9	66
18	Highly antibacterial polypeptide-based amphiphilic copolymers as multifunctional non-viral vectors for enhanced intracellular siRNA delivery and anti-infection. <i>Acta Biomaterialia</i> , 2017 , 58, 90-101	10.8	22
17	Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities. <i>ACS Applied Materials & Discourt Americal</i> (2017), 9, 10383-10397	9.5	115
16	An Environmentally Benign Antimicrobial Coating Based on a Protein Supramolecular Assembly. <i>ACS Applied Materials & District Action Supramolecular Assembly</i> .	9.5	122
15	Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings. <i>Polymer Chemistry</i> , 2017 , 8, 6386-6397	4.9	65

LIST OF PUBLICATIONS

14	High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-graft-Quaternized Chitosan Nanohybrid Electrode Coating. <i>ACS Nano</i> , 2015 , 9, 10142-57	16.7	74
13	Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. <i>Acta Biomaterialia</i> , 2015 , 26, 236-48	10.8	346
12	Free radical nano scavenger based on amphiphilic novolacs. <i>RSC Advances</i> , 2015 , 5, 95666-95673	3.7	5
11	Functionalized scaffolds to enhance tissue regeneration. <i>International Journal of Energy Production and Management</i> , 2015 , 2, 47-57	5.3	97
10	Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. <i>Acta Biomaterialia</i> , 2014 , 10, 258-66	10.8	110
9	Finely dispersed single-walled carbon nanotubes for polysaccharide hydrogels. <i>ACS Applied Materials & Materials &</i>	9.5	16
8	Antimicrobial macromolecules: synthesis methods and future applications. <i>RSC Advances</i> , 2012 , 2, 4031	3.7	77
7	Argon-plasma-induced ultrathin thermal grafting of thermoresponsive pNIPAm coating for contractile patterned human SMC sheet engineering. <i>Macromolecular Bioscience</i> , 2012 , 12, 937-45	5.5	20
6	Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. <i>Advanced Materials</i> , 2012 , 24, 4130-7	24	193
5	A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. <i>Nature Materials</i> , 2011 , 10, 149-56	27	588
4	A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. <i>Biomaterials</i> , 2011 , 32, 2704-12	15.6	173
3	Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms. <i>Biochemical and Biophysical Research Communications</i> , 2010 , 398, 594-600	3.4	52
2	High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides. <i>Biomacromolecules</i> , 2010 , 11, 60-7	6.9	125
1	Selective inactivation of Gram-positive bacteria in vitro and in vivo through metabolic labelling. Science China Materials,1	7.1	4