

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3859263/publications.pdf

DENC L

#	Article	IF	CITATIONS
1	A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioningÂability. Nature Materials, 2011, 10, 149-156.	13.3	701
2	Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomaterialia, 2015, 26, 236-248.	4.1	453
3	Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chemical Society Reviews, 2021, 50, 8762-8789.	18.7	337
4	Rejuvenated Photodynamic Therapy for Bacterial Infections. Advanced Healthcare Materials, 2019, 8, e1900608.	3.9	252
5	Cationic Peptidopolysaccharides Show Excellent Broadâ€6pectrum Antimicrobial Activities and High Selectivity. Advanced Materials, 2012, 24, 4130-4137.	11.1	226
6	A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials, 2011, 32, 2704-2712.	5.7	216
7	An Environmentally Benign Antimicrobial Coating Based on a Protein Supramolecular Assembly. ACS Applied Materials & Interfaces, 2017, 9, 198-210.	4.0	167
8	High Potency and Broad-Spectrum Antimicrobial Peptides Synthesized via Ring-Opening Polymerization of I±-Aminoacid- <i>N</i> -carboxyanhydrides. Biomacromolecules, 2010, 11, 60-67.	2.6	155
9	Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomaterialia, 2017, 51, 112-124.	4.1	152
10	A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper. ACS Applied Materials & Interfaces, 2019, 11, 40613-40619.	4.0	146
11	Dual-Functional Polyethylene Glycol- <i>b</i> -polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities. ACS Applied Materials & Interfaces, 2017, 9, 10383-10397.	4.0	142
12	Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomaterialia, 2014, 10, 258-266.	4.1	134
13	Ultraâ€Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Microâ€Pyramid Patterned Ionic Hydrogel for Interactive Human–Machine Interfaces. Advanced Science, 2022, 9, e2104168.	5.6	123
14	Functionalized scaffolds to enhance tissue regeneration. International Journal of Energy Production and Management, 2015, 2, 47-57.	1.9	115
15	Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants, 2019, 8, 556.	2.2	99
16	Antimicrobial macromolecules: synthesis methods and future applications. RSC Advances, 2012, 2, 4031.	1.7	96
17	High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide- <i>graft</i> -Quaternized Chitosan Nanohybrid Electrode Coating. ACS Nano, 2015, 9, 10142-57.	7.3	95
18	Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings. Polymer Chemistry, 2017, 8, 6386-6397.	1.9	89

Peng Li

#	Article	IF	CITATIONS
19	Cationic peptidopolysaccharides synthesized by â€ [~] click' chemistry with enhanced broad-spectrum antimicrobial activities. Polymer Chemistry, 2017, 8, 3788-3800.	1.9	88
20	Autoclavingâ€Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies. Advanced Healthcare Materials, 2017, 6, 1601173.	3.9	82
21	Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials, 2018, 162, 109-122.	5.7	72
22	A multifunctional shape-adaptive and biodegradable hydrogel with hemorrhage control and broad-spectrum antimicrobial activity for wound healing. Biomaterials Science, 2020, 8, 6930-6945.	2.6	70
23	Design and Synthesis of Biocompatible, Hemocompatible, and Highly Selective Antimicrobial Cationic Peptidopolysaccharides via Click Chemistry. Biomacromolecules, 2019, 20, 2230-2240.	2.6	69
24	Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomaterials Science, 2020, 8, 278-289.	2.6	65
25	Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms. Biochemical and Biophysical Research Communications, 2010, 398, 594-600.	1.0	64
26	Mussel-Inspired Hydrogel with Potent <i>in Vivo</i> Contact-Active Antimicrobial and Wound Healing Promoting Activities. ACS Applied Bio Materials, 2019, 2, 3329-3340.	2.3	58
27	Antimicrobial Effect of a Novel Chitosan Derivative and Its Synergistic Effect with Antibiotics. ACS Applied Materials & amp; Interfaces, 2021, 13, 3237-3245.	4.0	57
28	Hydrogel Effects Rapid Biofilm Debridement with ex situ Contact-Kill to Eliminate Multidrug Resistant Bacteria in vivo. ACS Applied Materials & Interfaces, 2018, 10, 20356-20367.	4.0	51
29	Flexible, Degradable, and Cost-Effective Strain Sensor Fabricated by a Scalable Papermaking Procedure. ACS Sustainable Chemistry and Engineering, 2018, 6, 15749-15755.	3.2	48
30	Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Progress in Polymer Science, 2021, 116, 101389.	11.8	48
31	Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS Applied Bio Materials, 2022, 5, 366-393.	2.3	48
32	Flexible and Degradable Multimodal Sensor Fabricated by Transferring Laser-Induced Porous Carbon on Starch Film. ACS Sustainable Chemistry and Engineering, 2020, 8, 527-533.	3.2	45
33	Initiated Chemical Vapor Deposition of Graded Polymer Coatings Enabling Antibacterial, Antifouling, and Biocompatible Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 18978-18986.	4.0	45
34	One-step vapor deposition of fluorinated polycationic coating to fabricate antifouling and anti-infective textile against drug-resistant bacteria and viruses. Chemical Engineering Journal, 2021, 418, 129368.	6.6	43
35	Musselâ€Inspired, Surfaceâ€Attachable Initiator for Grafting of Antimicrobial and Antifouling Hydrogels. Macromolecular Rapid Communications, 2019, 40, e1900268.	2.0	42
36	Precisely Structured Nitric-Oxide-Releasing Copolymer Brush Defeats Broad-Spectrum Catheter-Associated Biofilm Infections <i>In Vivo</i> . ACS Central Science, 2020, 6, 2031-2045.	5.3	41

Peng Li

#	Article	IF	CITATIONS
37	Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. Biomaterials Science, 2019, 7, 3334-3347.	2.6	39
38	Single-step fabrication of catechol-ε-poly-L-lysine antimicrobial paint that prevents superbug infection and promotes osteoconductivity of titanium implants. Chemical Engineering Journal, 2020, 396, 125240.	6.6	36
39	Photoactivatable Nitric Oxide-Releasing Gold Nanocages for Enhanced Hyperthermia Treatment of Biofilm-Associated Infections. ACS Applied Materials & Interfaces, 2021, 13, 50668-50681.	4.0	36
40	Intelligent polymeric hydrogen sulfide delivery systems for therapeutic applications. Bioactive Materials, 2023, 19, 198-216.	8.6	34
41	Engineering poly(ionic liquid) semi-IPN hydrogels with fast antibacterial and anti-inflammatory properties for wound healing. Chemical Engineering Journal, 2021, 413, 127429.	6.6	33
42	Catechol cross-linked antimicrobial peptide hydrogels prevent multidrug-resistant Acinetobacter baumannii infection in burn wounds. Bioscience Reports, 2019, 39, .	1.1	31
43	Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines. Journal of Materials Science and Technology, 2021, 69, 188-199.	5.6	31
44	Lysozymes in Fish. Journal of Agricultural and Food Chemistry, 2021, 69, 15039-15051.	2.4	31
45	Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomaterialia, 2018, 73, 190-203.	4.1	30
46	Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. Npj Flexible Electronics, 2021, 5, .	5.1	30
47	Synthesis of sandwich-structured silver@polydopamine@silver shells with enhanced antibacterial activities. Journal of Colloid and Interface Science, 2020, 558, 47-54.	5.0	28
48	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1369-1388.	1.8	27
49	General One-Pot Method for Preparing Highly Water-Soluble and Biocompatible Photoinitiators for Digital Light Processing-Based 3D Printing of Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 55507-55516.	4.0	27
50	Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomaterialia, 2021, 125, 29-40.	4.1	26
51	Stable and self-healable LbL coating with antibiofilm efficacy based on alkylated polyethyleneimine micelles. Journal of Materials Chemistry B, 2019, 7, 3865-3875.	2.9	25
52	An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drugâ€Resistant Bacteria. Advanced Materials, 2022, 34, e2200334.	11.1	25
53	Metal ions †̃sewing' isoporous membranes with polystyrene-block-poly (acrylic acid) block copolymer. Journal of Membrane Science, 2019, 587, 117086.	4.1	24
54	Motion Detecting, Temperature Alarming, and Wireless Wearable Bioelectronics Based on Intrinsically Antibacterial Conductive Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 14596-14606.	4.0	24

Peng Li

#	Article	IF	CITATIONS
55	Argonâ€Plasmaâ€Induced Ultrathin Thermal Grafting of Thermoresponsive pNIPAm Coating for Contractile Patterned Human SMC Sheet Engineering. Macromolecular Bioscience, 2012, 12, 937-945.	2.1	23
56	Finely Dispersed Single-Walled Carbon Nanotubes for Polysaccharide Hydrogels. ACS Applied Materials & Interfaces, 2012, 4, 4610-4615.	4.0	22
57	Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Delivery and Translational Research, 2021, 11, 1456-1474.	3.0	22
58	Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. Science China Materials, 2020, 63, 316-324.	3.5	20
59	Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 61669-61680.	4.0	16
60	The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. Research, 2020, 2016201.	2.8	14
61	Selective inactivation of Gram-positive bacteria in vitro and in vivo through metabolic labelling. Science China Materials, 2022, 65, 237-245.	3.5	13
62	Multifunctional CuOâ€Coated Mesh for Wastewater Treatment: Effective Oil/Water Separation, Organic Contaminants Photodegradation, and Bacterial Photodynamic Inactivation. Advanced Materials Interfaces, 2021, 8, 2101179.	1.9	11
63	Free radical nano scavenger based on amphiphilic novolacs. RSC Advances, 2015, 5, 95666-95673.	1.7	6
64	Multifunctional Magnetic Porous Microspheres for Highly Efficient and Recyclable Water Disinfection and Dye Removal. ACS Applied Polymer Materials, 2022, 4, 1576-1585.	2.0	5
65	Biomass-Templated Fabrication of Metallic Materials for Photocatalytic and Bactericidal Applications. Materials, 2019, 12, 1271.	1.3	4
66	Nanoagent-based theranostic strategies against human coronaviruses. Nano Research, 2022, 15, 1-15.	5.8	4
67	Core-Cross-Linking of Polymeric Micelles by Di- <i>para</i> -Substituted <i>S</i> -Aroylthiooximes as Linkers for Controlled H ₂ S Release. ACS Macro Letters, 2022, 11, 622-629.	2.3	3
68	Perspectives on Biomaterial-Associated Infection: Pathogenesis and Current Clinical Demands. , 2020, , 75-93.		1