
Robert C Stanton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3858970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SGLT2 Inhibitors and Other Novel Therapeutics in the Management of Diabetic Kidney Disease. Seminars in Nephrology, 2021, 41, 85-95.	1.6	2
2	Role of Glucose Metabolism and Mitochondrial Function in Diabetic Kidney Disease. Current Diabetes Reports, 2021, 21, 6.	4.2	8
3	The Warburg Effect, Lactate, and Nearly a Century of Trying to Cure Cancer. Seminars in Nephrology, 2019, 39, 380-393.	1.6	68
4	High glucose–induced ubiquitination of G6PD leads to the injury of podocytes. FASEB Journal, 2019, 33, 6296-6310.	0.5	28
5	Regional differences in brain glucose metabolism determined by imaging mass spectrometry. Molecular Metabolism, 2018, 12, 113-121.	6.5	40
6	Linagliptin unmasks specific antioxidant pathways protective against albuminuria and kidney hypertrophy in a mouse model of diabetes. PLoS ONE, 2018, 13, e0200249.	2.5	22
7	Improved clinical trial enrollment criterion toÂidentify patients with diabetes at risk of end-stage renal disease. Kidney International, 2017, 92, 258-266.	5.2	38
8	Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nature Medicine, 2017, 23, 753-762.	30.7	337
9	Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized <scp>MARLINA</scp> â€ <scp>T2D</scp> trial. Diabetes, Obesity and Metabolism, 2017, 19, 1610-1619.	4.4	119
10	The kallikrein–kinin system in diabetic kidney disease. Current Opinion in Nephrology and Hypertension, 2017, 26, 351-357.	2.0	6
11	Glucose 6-phosphate dehydrogenase and the kidney. Current Opinion in Nephrology and Hypertension, 2017, 26, 43-49.	2.0	38
12	Patterns of Estimated Glomerular Filtration Rate Decline Leading to End-Stage Renal Disease in Type 1 Diabetes. Diabetes Care, 2016, 39, 2262-2269.	8.6	46
13	Exogenous kallikrein protects against diabetic nephropathy. Kidney International, 2016, 90, 1023-1036.	5.2	34
14	Definitive localization of intracellular proteins: Novel approach using CRISPR-Cas9 genome editing, with glucose 6-phosphate dehydrogenase as a model. Analytical Biochemistry, 2016, 494, 55-67.	2.4	7
15	Metformin Use in Type 2 Diabetes Mellitus With CKD: Is It Time to Liberalize Dosing Recommendations?. American Journal of Kidney Diseases, 2015, 66, 193-195.	1.9	9
16	In Reply to â€~Restricting Metformin in CKD: Continued Caution Warranted'. American Journal of Kidney Diseases, 2015, 66, 1102.	1.9	0
17	Improved Glycemic Control and Risk of ESRD in Patients with Type 1 Diabetes and Proteinuria. Journal of the American Society of Nephrology: JASN, 2014, 25, 2916-2925.	6.1	39
18	Sodium Glucose Transport 2 (SGLT2) Inhibition Decreases Glomerular Hyperfiltration. Circulation, 2014, 129, 542-544	1.6	50

ROBERT C STANTON

#	Article	IF	CITATIONS
19	Clinical Challenges in Diagnosis and Management of Diabetic Kidney Disease. American Journal of Kidney Diseases, 2014, 63, S3-S21.	1.9	85
20	Frontiers in Diabetic Kidney Disease: Introduction. American Journal of Kidney Diseases, 2014, 63, S1-S2.	1.9	17
21	Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity. ACS Chemical Biology, 2014, 9, 2032-2048.	3.4	82
22	Combination Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Diabetic Kidney Disease. Current Diabetes Reports, 2013, 13, 567-573.	4.2	5
23	A story of microalbuminuria and diabetic nephropathy. Journal of Nephropathology, 2013, 2, 234-40.	0.2	42
24	Serum Concentration of Cystatin C and Risk of End-Stage Renal Disease in Diabetes. Diabetes Care, 2012, 35, 2311-2316.	8.6	61
25	The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end-stage renal disease. Kidney International, 2012, 82, 589-597.	5.2	120
26	Diabetes and the Kidney. , 2012, , 277-294.		0
27	Glucoseâ€6â€phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life, 2012, 64, 362-369.	3.4	514
28	Increasing Glucose 6-Phosphate Dehydrogenase Activity Restores Redox Balance in Vascular Endothelial Cells Exposed to High Glucose. PLoS ONE, 2012, 7, e49128.	2.5	46
29	A complex interplay of factors causes diabetic nephropathy. Metabolism: Clinical and Experimental, 2011, 60, 591-593.	3.4	7
30	Oxidative Stress and Diabetic Kidney Disease. Current Diabetes Reports, 2011, 11, 330-336.	4.2	98
31	Risk for ESRD in Type 1 Diabetes Remains High Despite Renoprotection. Journal of the American Society of Nephrology: JASN, 2011, 22, 545-553.	6.1	166
32	Use of Medications to Lower Urine Protein Level in Patients With Diabetic Kidney Disease. Current Diabetes Reports, 2010, 10, 257-260.	4.2	0
33	Diabetic Kidney Disease. , 2010, , 39-56.		2
34	High glucose inhibits glucoseâ€6â€phosphate dehydrogenase, leading to increased oxidative stress and βâ€cell apoptosis. FASEB Journal, 2010, 24, 1497-1505.	0.5	181
35	Glucoseâ€6â€phosphate dehydrogenaseâ€deficient mice have increased renal oxidative stress and increased albuminuria. FASEB Journal, 2010, 24, 609-616.	0.5	76
36	The Mentored Clinical Casebook Project at Harvard Medical School. Academic Medicine, 2007, 82, 516-520.	1.6	5

ROBERT C STANTON

#	Article	IF	CITATIONS
37	Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nature Medicine, 2007, 13, 189-197.	30.7	306
38	Clinical trials report. Current Diabetes Reports, 2007, 7, 437-438.	4.2	0
39	Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. American Journal of Physiology - Renal Physiology, 2005, 289, F1040-F1047.	2.7	165
40	Intensive treatment of diabetic nephropathy. Current Diabetes Reports, 2004, 4, 433-434.	4.2	0
41	Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: Involvement in diabetic teratogenesis. Birth Defects Research Part A: Clinical and Molecular Teratology, 2004, 70, 519-527.	1.6	79
42	Glucose-6-phosphate Dehydrogenase Modulates Vascular Endothelial Growth Factor-mediated Angiogenesis. Journal of Biological Chemistry, 2003, 278, 32100-32106.	3.4	127
43	Glucose-6-Phosphate Dehydrogenase Overexpression Decreases Endothelial Cell Oxidant Stress and Increases Bioavailable Nitric Oxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 411-417.	2.4	179
44	Suppression of Interleukin-1β-Induced Nitric Oxide Production in RINm5F Cells by Inhibition of Glucose-6-phosphate Dehydrogenaseâ€. Biochemistry, 2002, 41, 14726-14733.	2.5	21
45	Glucoseâ€6â€phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability. FASEB Journal, 2001, 15, 1771-1773.	0.5	136
46	A Method for Determination of Pyridine Nucleotides Using a Single Extract. Analytical Biochemistry, 2000, 285, 163-167.	2.4	103
47	High Clucose Inhibits Glucose-6-phosphate Dehydrogenase via cAMP in Aortic Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 40042-40047.	3.4	179
48	Importance of glucose-6-phosphate dehydrogenase activity in cell death. American Journal of Physiology - Cell Physiology, 1999, 276, C1121-C1131.	4.6	220
49	Importance of Glucose-6-phosphate Dehydrogenase Activity for Cell Growth. Journal of Biological Chemistry, 1998, 273, 10609-10617.	3.4	422