Wujie Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3858568/publications.pdf

Version: 2024-02-01

257450 276875 1,812 65 24 41 citations h-index g-index papers 65 65 65 816 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	IRFR-Net: Interactive Recursive Feature-Reshaping Network for Detecting Salient Objects in RGB-D Images. IEEE Transactions on Neural Networks and Learning Systems, 2024, PP, 1-13.	11.3	100
2	Deep Binocular Fixation Prediction Using a Hierarchical Multimodal Fusion Network. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 476-486.	3.8	26
3	ECFFNet: Effective and Consistent Feature Fusion Network for RGB-T Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 1224-1235.	8.3	117
4	CEGFNet: Common Extraction and Gate Fusion Network for Scene Parsing of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	6.3	8
5	CCAFNet: Crossflow and Cross-Scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images. IEEE Transactions on Multimedia, 2022, 24, 2192-2204.	7.2	77
6	TMFNet: Three-Input Multilevel Fusion Network for Detecting Salient Objects in RGB-D Images. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 593-601.	4.9	17
7	MFFENet: Multiscale Feature Fusion and Enhancement Network For RGB–Thermal Urban Road Scene Parsing. IEEE Transactions on Multimedia, 2022, 24, 2526-2538.	7.2	55
8	APNet: Adversarial Learning Assistance and Perceived Importance Fusion Network for All-Day RGB-T Salient Object Detection. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 957-968.	4.9	39
9	RTLNet: Recursive Triple-Path Learning Network for Scene Parsing of RGB-D Images. IEEE Signal Processing Letters, 2022, 29, 429-433.	3 . 6	O
10	CIMFNet: Cross-Layer Interaction and Multiscale Fusion Network for Semantic Segmentation of High-Resolution Remote Sensing Images. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 666-676.	10.8	38
11	HFNet: Hierarchical feedback network with multilevel atrous spatial pyramid pooling for RGB-D saliency detection. Neurocomputing, 2022, 490, 347-357.	5.9	44
12	FRNet: Feature Reconstruction Network for RGB-D Indoor Scene Parsing. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 677-687.	10.8	37
13	RLLNet: a lightweight remaking learning network for saliency redetection on RGB-D images. Science China Information Sciences, 2022, 65, $1.$	4.3	33
14	Salient Object Detection in Stereoscopic 3D Images Using a Deep Convolutional Residual Autoencoder. IEEE Transactions on Multimedia, 2021, 23, 3388-3399.	7.2	55
15	TSNet: Three-Stream Self-Attention Network for RGB-D Indoor Semantic Segmentation. IEEE Intelligent Systems, 2021, 36, 73-78.	4.0	79
16	Multiscale multilevel context and multimodal fusion for RGB-D salient object detection. Signal Processing, 2021, 178, 107766.	3.7	49
17	Attention-based contextual interaction asymmetric network for RGB-D saliency prediction. Journal of Visual Communication and Image Representation, 2021, 74, 102997.	2.8	2
18	Multi-layer fusion network for blind stereoscopic 3D visual quality prediction. Signal Processing: Image Communication, 2021, 91, 116095.	3.2	3

#	Article	IF	Citations
19	Global and Local-Contrast Guides Content-Aware Fusion for RGB-D Saliency Prediction. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 3641-3649.	9.3	107
20	TSFNet: Two-Stage Fusion Network for RGB-T Salient Object Detection. IEEE Signal Processing Letters, 2021, 28, 1655-1659.	3.6	25
21	MRINet: Multilevel Reverse-Context Interactive-Fusion Network for Detecting Salient Objects in RGB-D Images. IEEE Signal Processing Letters, 2021, 28, 1525-1529.	3.6	3
22	SEVâ€Net: Residual network embedded with attention mechanism for plant disease severity detection. Concurrency Computation Practice and Experience, 2021, 33, e6161.	2.2	23
23	GMNet: Graded-Feature Multilabel-Learning Network for RGB-Thermal Urban Scene Semantic Segmentation. IEEE Transactions on Image Processing, 2021, 30, 7790-7802.	9.8	142
24	Parallax-Estimation-Enhanced Network With Interweave Consistency Feature Fusion for Binocular Salient Object Detection. IEEE Signal Processing Letters, 2021, 28, 927-931.	3.6	5
25	Boundary-aware pyramid attention network for detecting salient objects in RGB-D images. , 2021, 111 , 102975.		3
26	A miniature potentiometric sensor for dopamine determination in vitro. Measurement Science and Technology, 2021, 32, 065105.	2.6	2
27	Deep Multimodal Fusion Autoencoder for Saliency Prediction of RGB-D Images. Computational Intelligence and Neuroscience, 2021, 2021, 1-10.	1.7	3
28	Feasibility study of detecting plum's early mechanical injury based on optical coherence tomography and cell morphological parameters. Journal of Food Processing and Preservation, 2021, 45, e15664.	2.0	2
29	Two-Stage Cascaded Decoder for Semantic Segmentation of RGB-D Images. IEEE Signal Processing Letters, 2021, 28, 1115-1119.	3.6	20
30	Boundary-enhanced attention-aware network for detecting salient objects in RGB-depth images. Journal of Electronic Imaging, 2021, 30, .	0.9	0
31	Hierarchical Multimodal Adaptive Fusion (HMAF) Network for Prediction of RGB-D Saliency. Computational Intelligence and Neuroscience, 2020, 2020, 1-9.	1.7	2
32	Three-branch architecture for stereoscopic 3D salient object detection., 2020, 106, 102818.		6
33	Asymmetric Deeply Fused Network for Detecting Salient Objects in RGB-D Images. IEEE Signal Processing Letters, 2020, 27, 1620-1624.	3.6	10
34	Hybrid-Attention Network for RGB-D Salient Object Detection. Applied Sciences (Switzerland), 2020, 10, 5806.	2.5	10
35	Opinion-unaware blind picture quality measurement using deep encoder–decoder architecture. , 2020, 107, 102834.		1
36	Cross-Modal Feature Integration Network for Human Eye-Fixation Prediction in RGB-D Images. IEEE Access, 2020, 8, 202765-202773.	4.2	3

#	Article	IF	CITATIONS
37	EMSGD: An Improved Learning Algorithm of Neural Networks With Imbalanced Data. IEEE Access, 2020, 8, 64086-64098.	4.2	4
38	GFNet: Gate Fusion Network With Res2Net for Detecting Salient Objects in RGB-D Images. IEEE Signal Processing Letters, 2020, 27, 800-804.	3.6	22
39	Blind Binocular Visual Quality Predictor Using Deep Fusion Network. IEEE Transactions on Computational Imaging, 2020, 6, 883-893.	4.4	31
40	Traffic Scene Depth Analysis Based on Depthwise Separable Convolutional Neural Network. Journal of Electrical and Computer Engineering, 2019, 2019, 1-10.	0.9	2
41	Blind Stereo Image Quality Evaluation Based on Convolutional Network and Saliency Weighting. Mathematical Problems in Engineering, 2019, 2019, 1-7.	1.1	0
42	Learning to Measure Stereoscopic S3D Image Perceptual Quality on the Basis of Binocular Rivalry Response. Applied Sciences (Switzerland), 2019, 9, 3906.	2.5	1
43	Perceived quality measurement of stereoscopic 3D images based on sparse representation and binocular combination., 2019, 93, 128-137.		4
44	Deep Road Scene Understanding. IEEE Signal Processing Letters, 2019, 26, 587-591.	3.6	20
45	Deep blind quality evaluator for multiply distorted images based on monogenic binary coding. Journal of Visual Communication and Image Representation, 2019, 60, 305-311.	2.8	2
46	A novel robust color image watermarking method using RGB correlations. Multimedia Tools and Applications, 2019, 78, 20133-20155.	3.9	30
47	DMFNet: Deep Multi-Modal Fusion Network for RGB-D Indoor Scene Segmentation. IEEE Access, 2019, 7, 169350-169358.	4.2	24
48	Blind screen content image quality measurement based on sparse feature learning. Signal, Image and Video Processing, 2019, 13, 525-530.	2.7	8
49	Attention-based fusion network for human eye-fixation prediction in 3D images. Optics Express, 2019, 27, 34056.	3.4	14
50	Loquat Bruise Detection Using Optical Coherence Tomography Based on Microstructural Parameters. Food Analytical Methods, 2018, 11, 2692-2698.	2.6	18
51	Local and Global Feature Learning for Blind Quality Evaluation of Screen Content and Natural Scene Images. IEEE Transactions on Image Processing, 2018, 27, 2086-2095.	9.8	141
52	Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain. 3D Research, 2018, 9, 1.	1.8	1
53	Toward an unsupervised blind stereoscopic 3D image quality assessment using joint spatial and frequency representations. AEU - International Journal of Electronics and Communications, 2018, 94, 303-310.	2.9	5
54	Utilizing Dictionary Learning and Machine Learning for Blind Quality Assessment of 3-D Images. IEEE Transactions on Broadcasting, 2017, 63, 404-415.	3.2	42

#	Article	IF	CITATIONS
55	Local gradient patterns (LGP): An effective local-statistical-feature extraction scheme for no-reference image quality assessment. Information Sciences, 2017, 397-398, 1-14.	6.9	56
56	Blind quality estimator for 3D images based on binocular combination and extreme learning machine. Pattern Recognition, 2017, 71, 207-217.	8.1	37
57	Blind 3D image quality assessment based on self-similarity of binocular features. Neurocomputing, 2017, 224, 128-134.	5.9	28
58	Binocular Responses for No-Reference 3D Image Quality Assessment. IEEE Transactions on Multimedia, 2016, 18, 1077-1084.	7.2	66
59	Automated Internal Classification of Beadless Chinese ZhuJi Freshwater Pearls based on Optical Coherence Tomography Images. Scientific Reports, 2016, 6, 33819.	3.3	9
60	Utilizing binocular vision to facilitate completely blind 3D image quality measurement. Signal Processing, 2016, 129, 130-136.	3.7	22
61	Dynamics analysis and circuit implementation of a new three-dimensional chaotic system. Optik, 2015, 126, 765-768.	2.9	24
62	Reduced reference stereoscopic image quality assessment using digital watermarking. Computers and Electrical Engineering, 2014, 40, 104-116.	4.8	9
63	PMFS: A Perceptual Modulated Feature Similarity Metric for Stereoscopic Image Quality Assessment. IEEE Signal Processing Letters, 2014, 21, 1003-1006.	3.6	22
64	Reduced-reference stereoscopic image quality assessment based on view and disparity zero-watermarks. Signal Processing: Image Communication, 2014, 29, 167-176.	3.2	24
65	New visual perceptual pooling strategy for image quality assessment. Journal of Electronics, 2012, 29, 254-261.	0.2	O