Hye Mi Gweon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3858070/publications.pdf

Version: 2024-02-01

		331670	315739
51	1,559	21	38
papers	citations	h-index	g-index
52	52	52	1917
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Shear-wave elastography in breast ultrasonography: the state of the art. Ultrasonography, 2017, 36, 300-309.	2.3	121
2	Added Value of Shear-Wave Elastography for Evaluation of Breast Masses Detected with Screening US Imaging. Radiology, 2014, 273, 61-69.	7.3	105
3	Diagnostic value of commercially available shear-wave elastography for breast cancers: integration into BI-RADS classification with subcategories of category 4. European Radiology, 2013, 23, 2695-2704.	4.5	86
4	Comparison of Strain and Shear Wave Elastography for the Differentiation of Benign From Malignant Breast Lesions, Combined With B-mode Ultrasonography: Qualitative and Quantitative Assessments. Ultrasound in Medicine and Biology, 2014, 40, 2336-2344.	1.5	85
5	Breast MR Imaging Screening in Women with a History of Breast Conservation Therapy. Radiology, 2014, 272, 366-373.	7.3	81
6	Shear-wave elastography of invasive breast cancer: correlation between quantitative mean elasticity value and immunohistochemical profile. Breast Cancer Research and Treatment, 2013, 138, 119-126.	2.5	80
7	Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiology, 2020, 294, 31-41.	7.3	75
8	Radiologist Assessment of Breast Density by BI-RADS Categories Versus Fully Automated Volumetric Assessment. American Journal of Roentgenology, 2013, 201, 692-697.	2.2	74
9	Thyroid Nodules with Bethesda System III Cytology: Can Ultrasonography Guide the Next Step?. Annals of Surgical Oncology, 2013, 20, 3083-3088.	1.5	72
10	Visually assessed colour overlay features in shear-wave elastography for breast masses: quantification and diagnostic performance. European Radiology, 2013, 23, 658-663.	4.5	61
11	Automated Volumetric Breast Density Measurements in the Era of the BI-RADS Fifth Edition: A Comparison With Visual Assessment. American Journal of Roentgenology, 2016, 206, 1056-1062.	2.2	56
12	Three-dimensional shear-wave elastography for differentiating benign and malignant breast lesions: comparison with two-dimensional shear-wave elastography. European Radiology, 2013, 23, 1519-1527.	4.5	50
13	Role of diffusion-weighted MRI: predicting axillary lymph node metastases in breast cancer. Acta Radiologica, 2014, 55, 909-916.	1.1	43
14	Ductal carcinoma in situ diagnosed at US-guided 14-gauge core-needle biopsy for breast mass: Preoperative predictors of invasive breast cancer. European Journal of Radiology, 2014, 83, 654-659.	2.6	40
15	Clinical application of qualitative assessment for breast masses in shear-wave elastography. European Journal of Radiology, 2013, 82, e680-e685.	2.6	36
16	Pre-Operative Evaluation of Axillary Lymph Node Status in Patients with Suspected Breast Cancer Using Shear Wave Elastography. Ultrasound in Medicine and Biology, 2017, 43, 1581-1586.	1.5	36
17	Comparison of the diagnostic performance of digital breast tomosynthesis and magnetic resonance imaging added to digital mammography in women with known breast cancers. European Radiology, 2016, 26, 1556-1564.	4.5	32
18	Comparison of the diagnostic performances of ultrasonography, CT and fine needle aspiration cytology for the prediction of lymph node metastasis in patients with lymph node dissection of papillary thyroid carcinoma: A retrospective cohort study. International Journal of Surgery, 2018, 51, 145-150.	2.7	30

#	Article	IF	CITATIONS
19	Diagnostic performance of tomosynthesis and breast ultrasonography in women with dense breasts: a prospective comparison study. Breast Cancer Research and Treatment, 2017, 162, 85-94.	2.5	29
20	Preoperative Assessment of Extrathyroidal Extension of Papillary Thyroid Carcinoma. Journal of Ultrasound in Medicine, 2014, 33, 819-825.	1.7	26
21	Shear-Wave Elastography for the Detection of Residual Breast Cancer After Neoadjuvant Chemotherapy. Annals of Surgical Oncology, 2015, 22, 376-384.	1.5	25
22	Comparison of Visual Assessment of Breast Density in BI-RADS 4th and 5th Editions With Automated Volumetric Measurement. American Journal of Roentgenology, 2017, 209, 703-708.	2.2	24
23	Evaluation of Left Atrial Volumes Using Multidetector Computed Tomography: Comparison with Echocardiography. Korean Journal of Radiology, 2010, 11, 286.	3.4	21
24	Identification of Preoperative Magnetic Resonance Imaging Features Associated with Positive Resection Margins in Breast Cancer: A Retrospective Study. Korean Journal of Radiology, 2018, 19, 897.	3.4	21
25	Prediction of axillary response by monitoring with ultrasound and MRI during and after neoadjuvant chemotherapy in breast cancer patients. European Radiology, 2020, 30, 1460-1469.	4. 5	20
26	Repeat Diagnoses of Bethesda Category III Thyroid Nodules: What To Do Next?. PLoS ONE, 2015, 10, e0130138.	2.5	18
27	Thyroid nodules with nondiagnostic results on repeat fine-needle aspiration biopsy: which nodules should be considered for repeat biopsy or surgery rather than follow-up?. Ultrasonography, 2016, 35, 234-243.	2.3	17
28	Value of the US BI-RADS final assessment following mastectomy: BI-RADS 4 and 5 lesions. Acta Radiologica, 2012, 53, 255-260.	1.1	14
29	Diagnostic performance of qualitative shear-wave elastography according to different color map opacities for breast masses. European Journal of Radiology, 2013, 82, e326-e331.	2.6	14
30	The value of breast MRI for BI-RADS category 4B mammographic microcalcification: based on the 5th edition of BI-RADS. Clinical Radiology, 2018, 73, 750-755.	1,1	14
31	The clinical significance of accompanying NME on preoperative MR imaging in breast cancer patients. PLoS ONE, 2017, 12, e0178445.	2.5	14
32	Quantitative Lesion-to-Fat Elasticity Ratio Measured by Shear-Wave Elastography for Breast Mass: Which Area Should Be Selected as the Fat Reference?. PLoS ONE, 2015, 10, e0138074.	2.5	13
33	Predictive Factors for Active Surveillance of Subcentimeter Thyroid Nodules with Highly Suspicious US Features. Annals of Surgical Oncology, 2017, 24, 1540-1545.	1.5	13
34	Performance of shear-wave elastography for breast masses using different region-of-interest (ROI) settings. Acta Radiologica, 2018, 59, 789-797.	1.1	13
35	A convolutional deep learning model for improving mammographic breast-microcalcification diagnosis. Scientific Reports, 2021, 11, 23925.	3.3	12
36	Texture analysis using machine learning–based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy. European Radiology, 2021, 31, 6916-6928.	4.5	11

#	Article	IF	CITATIONS
37	Can galectinâ€3 be a useful marker for conventional papillary thyroid microcarcinoma?. Diagnostic Cytopathology, 2016, 44, 103-107.	1.0	9
38	3D Whole-Heart Coronary MR Angiography at 1.5T in Healthy Volunteers: Comparison between Unenhanced SSFP and Gd-Enhanced FLASH Sequences. Korean Journal of Radiology, 2011, 12, 679.	3.4	8
39	Evaluation of Reperfused Myocardial Infarction by Low-Dose Multidetector Computed Tomography Using Prospective Electrocardiography (ECG)-Triggering: Comparison with Magnetic Resonance Imaging. Yonsei Medical Journal, 2010, 51, 683.	2.2	7
40	Management for BI-RADS category 3 lesions detected in preoperative breast MR imaging of breast cancer patients. European Radiology, 2017, 27, 3211-3216.	4.5	7
41	Prognostic role of the Bethesda System for conventional papillary thyroid carcinoma. Head and Neck, 2016, 38, 1509-1514.	2.0	6
42	Scoring System to Stratify Malignancy Risks for Mammographic Microcalcifications Based on Breast Imaging Reporting and Data System 5th Edition Descriptors. Korean Journal of Radiology, 2019, 20, 1646.	3.4	6
43	Comparison of hormonal receptor and HER2 status between ultrasound-guided 14-gauge core needle biopsy and surgery in breast cancer patients. Ultrasonography, 2014, 33, 206-215.	2.3	6
44	Pretreatment MRI features associated with diagnostic accuracy of post-treatment MRI after neoadjuvant chemotherapy. Clinical Radiology, 2018, 73, 676.e9-676.e14.	1.1	5
45	Clinical Imaging of Glycogen-rich Clear Cell Carcinoma of the Breast: A Case Series with Literature Review. Magnetic Resonance in Medical Sciences, 2019, 18, 238-242.	2.0	5
46	Incidental Breast Lesions on Chest CT: Clinical Significance and Differential Features Requiring Referral. Journal of the Korean Society of Radiology, 2018, 79, 303.	0.2	3
47	Fully automated measurements of volumetric breast density adapted for BIRADS 5th edition: a comparison with visual assessment. Acta Radiologica, 2020, 62, 028418512095630.	1.1	3
48	Added value of abbreviated breast magnetic resonance imaging for assessing suspicious microcalcification on screening mammographyâ€"a prospective study. European Radiology, 2022, 32, 815-821.	4.5	3
49	US-guided 14G Core Needle Biopsy: Comparison Between Underestimated and Correctly Diagnosed Breast Cancers. Asian Pacific Journal of Cancer Prevention, 2014, 15, 3179-3183.	1.2	3
50	Preoperative Nodal US Features for Predicting Recurrence in N1b Papillary Thyroid Carcinoma. Cancers, 2022, 14, 174.	3.7	3
51	Percutaneous Stenting of the Superior Mesenteric Artery for the Treatment of Chronic Mesenteric Ischemia. Journal of the Korean Radiological Society, 2008, 58, 571.	0.0	2