De-Yu Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3858055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A de novo regulation design shows an effectiveness in altering plant secondary metabolism. Journal of Advanced Research, 2022, 37, 43-60.	4.4	7
2	Alternative splicing of CsJAZ1 negatively regulates flavanâ€3â€ol biosynthesis in tea plants. Plant Journal, 2022, 110, 243-261.	2.8	17
3	Anthocyanins from muscadine (Vitis rotundifolia) grape fruit. Current Plant Biology, 2022, 30, 100243.	2.3	13
4	Insights into acylation mechanisms: coâ€expression of serine carboxypeptidaseâ€like acyltransferases and their nonâ€catalytic companion paralogs. Plant Journal, 2022, 111, 117-133.	2.8	26
5	Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology, 2022, 571, 21-33.	1.1	24
6	Molecular and biochemical characterization of two 4-coumarate: CoA ligase genes in tea plant (Camellia sinensis). Plant Molecular Biology, 2022, 109, 579-593.	2.0	11
7	Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. Plant Journal, 2020, 101, 18-36.	2.8	54
8	Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2. Frontiers in Plant Science, 2020, 11, 601316.	1.7	74
9	RNA-seq of aboveground sporophyte's transcriptome of Huperzia serrata and transcriptional understanding of early steps associated with huperzine biosynthesis in forest. Current Plant Biology, 2020, 24, 100159.	2.3	2
10	Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. New Phytologist, 2020, 226, 1104-1116.	3.5	51
11	Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genomics, 2020, 21, 40.	1.2	21
12	A polyketide synthase gene cluster associated with the sexual reproductive cycle of the banana pathogen, Pseudocercospora fijiensis. PLoS ONE, 2019, 14, e0220319.	1.1	7
13	Untargeted Metabolomics of Nicotiana tabacum Grown in United States and India Characterizes the Association of Plant Metabolomes With Natural Climate and Geography. Frontiers in Plant Science, 2019, 10, 1370.	1.7	11
14	Artemisinin Biosynthesis in Non-glandular Trichome Cells of Artemisia annua. Molecular Plant, 2019, 12, 704-714.	3.9	62
15	Creation of elite growth and development features in PAP1-programmed red Nicotiana tabacum Xanthi via overexpression of synthetic geranyl pyrophosphate synthase genes. Molecular Breeding, 2019, 39, 1.	1.0	3
16	Functional characterization of Terminal Flower1 homolog in Cornus canadensis by genetic transformation. Plant Cell Reports, 2019, 38, 333-343.	2.8	2
17	Non-plastidial expression of a synthetic insect geranyl pyrophosphate synthase effectively increases tobacco plant biomass. Journal of Plant Physiology, 2018, 221, 144-155.	1.6	3
18	Cloning and characterization of a monoterpene synthase gene from flowers of Camelina sativa. Planta, 2018, 247, 443-457.	1.6	8

DE-Yu Xie

#	Article	IF	CITATIONS
19	HPLC-qTOF-MS/MS-Based Profiling of Flavan-3-ols and Dimeric Proanthocyanidins in Berries of Two Muscadine Grape Hybrids FLH 13-11 and FLH 17-66. Metabolites, 2018, 8, 57.	1.3	61
20	Evaluation of Digital Image Recognition Methods for Mass Spectrometry Imaging Data Analysis. Journal of the American Society for Mass Spectrometry, 2018, 29, 2467-2470.	1.2	18
21	Overexpression of Artemisia annua Cinnamyl Alcohol Dehydrogenase Increases Lignin and Coumarin and Reduces Artemisinin and Other Sesquiterpenes. Frontiers in Plant Science, 2018, 9, 828.	1.7	28
22	Molecular Cloning and Functional Characterization of a Dihydroflavonol 4-Reductase from Vitis bellula. Molecules, 2018, 23, 861.	1.7	11
23	Metabolic engineering of anthocyanins in dark tobacco varieties. Physiologia Plantarum, 2017, 159, 2-12.	2.6	40
24	Overexpression of a typeâ€l isopentenyl pyrophosphate isomerase of <i>Artemisia annua</i> in the cytosol leads to high arteannuinÂB production and artemisinin increase. Plant Journal, 2017, 91, 466-479.	2.8	23
25	Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism. Journal of Plant Physiology, 2017, 215, 122-131.	1.6	5
26	Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis. Frontiers in Plant Science, 2017, 8, 77.	1.7	33
27	Functional Characterization of Tea (Camellia sinensis) MYB4a Transcription Factor Using an Integrative Approach. Frontiers in Plant Science, 2017, 8, 943.	1.7	89
28	Metabolic Characterization of the Anthocyanidin Reductase Pathway Involved in the Biosynthesis of Flavan-3-ols in Elite Shuchazao Tea (Camellia sinensis) Cultivar in the Field. Molecules, 2017, 22, 2241.	1.7	47
29	Ontogenetic characterization of sporangium and spore of Huperzia serrata: an anti-aging disease fern. , 2016, 57, 36.		2
30	Overexpression of a synthetic insect–plant geranyl pyrophosphate synthase gene in Camelina sativa alters plant growth and terpene biosynthesis. Planta, 2016, 244, 215-230.	1.6	19
31	Artemisia annua, artemisinin, and the Nobel Prize: beauty of natural products and educational significance. Science Bulletin, 2016, 61, 42-44.	4.3	8
32	Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). Journal of Plant Physiology, 2016, 204, 8-15.	1.6	69
33	Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives. Phytochemistry Reviews, 2016, 15, 1093-1114.	3.1	57
34	Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Planta, 2016, 243, 549-561.	1.6	17
35	Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta, 2016, 243, 1129-1141.	1.6	19
36	A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnology for Biofuels, 2015, 8, 175.	6.2	94

DE-Yu Xie

#	Article	IF	CITATIONS
37	Enhanced diversity and aflatoxigenicity in interspecific hybrids of <i>Aspergillus flavus</i> and <i>Aspergillus parasiticus</i> . Molecular Ecology, 2015, 24, 1889-1909.	2.0	36
38	Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum). Planta, 2015, 241, 1075-1089.	1.6	33
39	A Genome-Wide Scenario of Terpene Pathways in Self-pollinated Artemisia annua. Molecular Plant, 2015, 8, 1580-1598.	3.9	82
40	Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta, 2014, 239, 765-781.	1.6	61
41	Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula. Planta, 2014, 240, 381-398.	1.6	23
42	Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana. Recent Patents on Biotechnology, 2014, 8, 47-60.	0.4	200
43	Plant regeneration and genetic transformation of C. canadensis: a non-model plant appropriate for investigation of flower development in Cornus (Cornaceae). Plant Cell Reports, 2013, 32, 77-87.	2.8	13
44	Characterization of Flavan-3-ols and Expression of MYB and Late Pathway Genes Involved in Proanthocyanidin Biosynthesis in Foliage of Vitis bellula. Metabolites, 2013, 3, 185-203.	1.3	7
45	Efficient Somatic Embryogenesis and Organogenesis of Self-Pollination <i>Artemisia annua</i> Progeny and Artemisinin Formation in Regenerated Plants. American Journal of Plant Sciences, 2013, 04, 2206-2217.	0.3	13
46	Differentiation of programmed Arabidopsis cells. Bioengineered, 2012, 3, 54-59.	1.4	5
47	Evolution of bract development and B lass MADS box gene expression in petaloid bracts of <i>Cornus </i> s.Âl. (Cornaceae). New Phytologist, 2012, 196, 631-643.	3.5	24
48	An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants. Planta, 2012, 236, 901-918.	1.6	28
49	Regulation of anthocyanin biosynthesis by nitrogen in TTG1–GL3/TT8–PAP1-programmed red cells of Arabidopsis thaliana. Planta, 2012, 236, 825-837.	1.6	87
50	Special Issue on Metabolic Plant Biology. Planta, 2012, 236, 763-764.	1.6	0
51	Integration of GC-MS Based Non-Targeted Metabolic Profiling with Headspace Solid Phase Microextraction Enhances the Understanding of Volatile Differentiation in Tobacco Leaves from North Carolina, India and Brazil. American Journal of Plant Sciences, 2012, 03, 1759-1769.	0.3	24
52	A Small-Molecule Screen Identifies <scp>l</scp> -Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 3944-3960.	3.1	364
53	Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells. Planta, 2011, 233, 787-805.	1.6	40
54	Characterization of development and artemisinin biosynthesis in self-pollinated Artemisia annua plants. Planta, 2011, 234, 685-697.	1.6	27

DE-Yu Xie

#	Article	IF	CITATIONS
55	Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions. Planta, 2010, 231, 1385-1400.	1.6	75
56	Volatile compounds from leaf extracts of Juniperus excelsa growing in Syria via gas chromatography mass spectrometry. Analytical Methods, 2010, 2, 673.	1.3	34
57	Shoot regeneration of dwarf dogwood (Cornus canadensis L.) and morphological characterization of the regenerated plants. Plant Cell, Tissue and Organ Culture, 2009, 97, 27-37.	1.2	17
58	Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta, 2008, 229, 37-51.	1.6	64
59	TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development. Cell, 2008, 133, 177-191.	13.5	1,065
60	Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant Journal, 2006, 45, 895-907.	2.8	210
61	Proanthocyanidin Biosynthesis $\hat{a} \in$ " Still More Questions than Answers?. ChemInform, 2006, 37, no.	0.1	0
62	Proanthocyanidin biosynthesis – still more questions than answers?. Phytochemistry, 2005, 66, 2127-2144.	1.4	326
63	Proanthocyanidins – a final frontier in flavonoid research?. New Phytologist, 2005, 165, 9-28.	3.5	951
64	Molecular and Biochemical Analysis of Two cDNA Clones Encoding Dihydroflavonol-4-Reductase from Medicago truncatula Â. Plant Physiology, 2004, 134, 979-994.	2.3	139
65	Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Archives of Biochemistry and Biophysics, 2004, 422, 91-102.	1.4	154
66	Role of Anthocyanidin Reductase, Encoded by BANYULS in Plant Flavonoid Biosynthesis. Science, 2003, 299, 396-399.	6.0	663
67	Agrobacterium-mediated genetic transformation of Acacia mangium. Plant Cell Reports, 2002, 20, 917-922.	2.8	46
68	Regeneration of Acacia mangium through somatic embryogenesis. Plant Cell Reports, 2001, 20, 34-40.	2.8	54
69	In vitro regeneration of Acacia mangium via organogenesis. Plant Cell, Tissue and Organ Culture, 2001, 66, 167-173.	1.2	53
70	Selection of hairy root clones of Artemisia annua L. for artemisinin production. Israel Journal of Plant Sciences, 2001, 49, 129-134.	0.3	24
71	Isolation and production of artemisinin and stigmasterol in hairy root cultures of Artemisia annua. Plant Cell, Tissue and Organ Culture, 2000, 63, 161-166.	1.2	26
72	ZYGOTIC EMBRYO CULTURE OF TAXUS CHINESIS VAR. MAIREI AND PLANT REGENERATION THROUGH ORGANOGENESIS. Israel Journal of Plant Sciences, 1999, 47, 287-289.	0.3	3

-					
	F-	Y		X	1 F
${}^{\circ}$	-		ч	\sim	

#	Article	IF	CITATIONS
73	Comparative Metabolomics of Transgenic Tobacco Plants (Nicotiana tabacum var. Xanthi) Reveals Differential Effects of Engineered Complete and Incomplete Flavonoid Pathways on the Metabolome. , 0, , .		1