Santanu Paria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3857863/publications.pdf

Version: 2024-02-01

159585 114465 7,489 61 30 63 citations h-index g-index papers 64 64 64 12491 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Reviews, 2012, 112, 2373-2433.	47.7	3,011
2	A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Advances in Colloid and Interface Science, 2004, 110, 75-95.	14.7	826
3	Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science, 2014, 209, 8-39.	14.7	457
4	Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science, 2008, 138, 24-58.	14.7	407
5	Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review. Environmental Reviews, 2006, 14, 217-255.	4.5	261
6	Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale, 2015, 7, 19789-19873.	5 . 6	253
7	A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosensors and Bioelectronics, 2016, 79, 467-475.	10.1	173
8	Synthesis of sulfur nanoparticles in aqueous surfactant solutions. Journal of Colloid and Interface Science, 2010, 343, 439-446.	9.4	131
9	Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Advances, 2013, 3, 10471.	3. 6	127
10	Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Materials Research Bulletin, 2013, 48, 628-634.	5 . 2	97
11	Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO ₂ nanospheres. RSC Advances, 2015, 5, 37657-37668.	3.6	92
12	<i>Aegle marmelos</i> Leaf Extract and Plant Surfactants Mediated Green Synthesis of Au and Ag Nanoparticles by Optimizing Process Parameters Using Taguchi Method. ACS Sustainable Chemistry and Engineering, 2015, 3, 483-491.	6.7	90
13	Ag doped hollow TiO ₂ nanoparticles as an effective green fungicide against <i>Fusarium solani</i> and <i>Venturia inaequalis</i> phytopathogens. Nanotechnology, 2016, 27, 085103.	2.6	87
14	Dynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes. Journal of Colloid and Interface Science, 2009, 337, 555-562.	9.4	83
15	Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route. Dalton Transactions, 2014, 43, 5526.	3.3	83
16	Adsorption of anionic and non-ionic surfactants on a cellulosic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 252, 221-229.	4.7	82
17	Effect of silver doping on TiO ₂ , CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light. RSC Advances, 2014, 4, 37752.	3 . 6	67
18	Solubilization of Naphthalene by Pure and Mixed Surfactants. Industrial & Engineering Chemistry Research, 2006, 45, 3552-3558.	3.7	65

#	Article	IF	CITATIONS
19	Solubilization of Naphthalene in the Presence of Plantâ [°] Synthetic Mixed Surfactant Systems. Journal of Physical Chemistry B, 2009, 113, 474-481.	2.6	60
20	Mixed Phytochemicals Mediated Synthesis of Multifunctional Ag–Au–Pd Nanoparticles for Glucose Oxidation and Antimicrobial Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14018-14025.	8.0	54
21	Kinetics of Adsorption of Anionic, Cationic, and Nonionic Surfactants. Industrial & Engineering Chemistry Research, 2005, 44, 3091-3098.	3.7	52
22	Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions. Journal of Colloid and Interface Science, 2011, 354, 563-569.	9.4	47
23	The wettability of PTFE and glass surfaces by nanofluids. Journal of Colloid and Interface Science, 2014, 434, 141-151.	9.4	47
24	Wettability of a PTFE surface by cationic–non-ionic surfactant mixtures in the presence of electrolytes. Soft Matter, 2012, 8, 5429.	2.7	43
25	Adsorption enhancement of methylene blue dye at kaolinite clay–water interface influenced by electrolyte solutions. RSC Advances, 2015, 5, 30654-30659.	3.6	43
26	Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and their application for thiamine detection. RSC Advances, 2014, 4, 28645.	3.6	40
27	Wetting of PTFE and Glass Surfaces by Aqueous Solutions of Cationic and Anionic Double-Chain Surfactants. Industrial & Engineering Chemistry Research, 2012, 51, 10172-10178.	3.7	35
28	Carbon-Doped Mesoporous Anatase TiO2 Multi-Tubes Nanostructures for Highly Improved Visible Light Photocatalytic Activity. Inorganic Chemistry, 2017, 56, 10107-10116.	4.0	35
29	Green Synthesis of Single-Crystalline Akaganeite Nanorods for Peroxidase Mimic Colorimetric Sensing of Ultralow-Level Vitamin B1 and Sulfide Ions. ACS Applied Nano Materials, 2018, 1, 1236-1246.	5.0	32
30	Wetting of TX-100 and Igepal CO-630 Surfactants on a PTFE Surface. Industrial & Engineering Chemistry Research, 2011, 50, 6138-6145.	3.7	30
31	Optical Properties of Double-Shell Hollow ZnS–Ag2S Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 23385-23390.	3.1	30
32	Effects of Chain Length and Electrolyte on the Adsorption ofn-Alkylpyridinium Bromide Surfactants at Sandâ^'Water Interfaces. Industrial & Engineering Chemistry Research, 2006, 45, 712-718.	3.7	29
33	Self-assembly of colloidal sulfur particles on a glass surface from evaporating sessile drops: influence of different salts. New Journal of Chemistry, 2014, 38, 5943-5951.	2.8	29
34	Interfacial and wetting behavior of natural–synthetic mixed surfactant systems. RSC Advances, 2014, 4, 9182.	3.6	28
35	Effect of electrolytes on wettability of glass surface using anionic and cationic surfactant solutions. Journal of Colloid and Interface Science, 2014, 413, 24-30.	9.4	28
36	Organization of SiO ₂ and TiO ₂ Nanoparticles into Fractal Patterns on Glass Surface for the Generation of Superhydrophilicity. Journal of Physical Chemistry C, 2017, 121, 2428-2436.	3.1	28

#	Article	lF	CITATIONS
37	A novel method for the templated synthesis of Ag2S hollow nanospheres in aqueous surfactant media. Journal of Colloid and Interface Science, 2012, 369, 117-122.	9.4	27
38	Removal of surface adhered particles by surfactants and fluid motions. AICHE Journal, 2001, 47, 2557-2565.	3.6	26
39	Effect of cationic surfactant on the adsorption characteristics of anionic surfactant on cellulose surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 232, 139-142.	4.7	26
40	Phytochemicals mediated synthesis of multifunctional Ag-Au-TiO 2 heterostructure for photocatalytic and antimicrobial applications. Journal of Cleaner Production, 2017, 165, 360-368.	9.3	24
41	The mixing behavior of n-alkylpyridinium bromide–NP-9 mixed surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 113-118.	4.7	22
42	Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles. Dalton Transactions, 2016, 45, 811-819.	3.3	22
43	Rheological Behavior of Pyrophylliteâ^'Water Slurry in the Presence of Anionic, Cationic, and Nonionic Surfactants. Industrial & Engineering Chemistry Research, 2010, 49, 5400-5406.	3.7	20
44	Adsorption of Non-ionic Surfactants onto Sand and Its Importance in Naphthalene Removal. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 108-113.	3.7	18
45	Effect of Electrolyte Solutions on the Adsorption of Surfactants at PTFEâ^Water Interface. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 7060-7067.	3.7	18
46	Self-assembly of colloidal sulfur particles influenced by sodium oxalate salt on glass surface from evaporating drops. Soft Matter, 2012, 8, 3771.	2.7	17
47	Anti-Malassezia furfur activity of natural surfactant mediated in situ silver nanoparticles for a better antidandruff shampoo formulation. RSC Advances, 2016, 6, 11064-11069.	3.6	17
48	Au and Ag/Au double-shells hollow nanoparticles with improved near infrared surface plasmon and photoluminescence properties. Journal of Colloid and Interface Science, 2016, 461, 15-19.	9.4	16
49	An Au/AgBr–Ag heterostructure plasmonic photocatalyst with enhanced catalytic activity under visible light. Dalton Transactions, 2017, 46, 890-898.	3.3	16
50	Clay-supported anisotropic Au-modified N,S-doped TiO ₂ nanoparticles for enhanced photocatalytic dye degradation and esterification reactions. New Journal of Chemistry, 2020, 44, 2619-2629.	2.8	16
51	Fluorometric sensing of ultralow As(<scp>iii</scp>) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles. Dalton Transactions, 2015, 44, 20464-20474.	3.3	13
52	Naphthalene degradation in the presence of natural–synthetic surfactants mixture by mixed bacterial cultures. Journal of Environmental Chemical Engineering, 2014, 2, 826-831.	6.7	12
53	Growth Kinetics of Silver Bromide Nanoparticles in Aqueous Nonionic Surfactant Solutions. Industrial & Department of the Straight Strain (1997) and the Straight Stra	3.7	10
54	Natural Surfactants-Based Ag Nanofluids for Enhanced Wettability on Hair Surface. ACS Sustainable Chemistry and Engineering, 2018, 6, 3615-3623.	6.7	10

SANTANU PARIA

#	Article	IF	CITATION
55	Visible light-induced Ag nanoparticle deposited urchin-like structures for enhanced SERS application. Nanoscale, 2018, 10, 12970-12974.	5.6	10
56	Microwave-assisted one-pot synthesis of anisotropic gold nanoparticles with active high-energy facets for enhanced catalytic and metal enhanced fluorescence activities. CrystEngComm, 2018, 20, 4297-4304.	2.6	10
57	Organization of Palladium Nanoparticles into Fractal Patterns for Highly Enhanced Catalytic Activity and Anode Material for Direct Borohydride Fuel Cells Applications. ACS Applied Energy Materials, 2018, 1, 2164-2175.	5.1	8
58	Effect of Electrolytes on Solution and Interfacial Behaviors of Double Chain Cationic–Nonionic Surfactant Mixtures for Hydrophobic Surface Wetting and Oil/Water Emulsion Stability Applications. Langmuir, 2021, 37, 10560-10572.	3.5	8
59	Noble metals decorated hierarchical maghemite magnetic tubes as an efficient recyclable catalyst. Journal of Colloid and Interface Science, 2018, 511, 463-473.	9.4	7
60	Fractal pattern mediated superhydrophobic glass and metallic surfaces using PTFE particles: a generalized simple approach. New Journal of Chemistry, 2019, 43, 8075-8084.	2.8	7
61	A promising technique of <i>Aegle marmelos</i> leaf extract mediated selfâ€assembly for silver nanoprism formation. AICHE Journal, 2017, 63, 3670-3680.	3.6	3