Qiuming Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3857852/publications.pdf

Version: 2024-02-01

30047 36008 9,861 125 54 citations h-index papers

97 g-index 125 125 125 10695 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. Journal of the American Chemical Society, 2014, 136, 4113-4116.	6.6	1,068
2	Nano-selenium and its nanomedicine applications: a critical review. International Journal of Nanomedicine, 2018, Volume 13, 2107-2128.	3.3	394
3	In Situ Construction of Ag/TiO2/g-C3N4 Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution. Nanomaterials, 2020, 10, 1.	1.9	340
4	Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale, 2016, 8, 7085-7093.	2.8	325
5	Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Research Letters, 2015, 10, 931.	3.1	309
6	Selfâ€Assembled Luminescent Quantum Dots To Generate Fullâ€Color and White Circularly Polarized Light. Angewandte Chemie - International Edition, 2017, 56, 12174-12178.	7.2	295
7	Sandwiched Fe ₃ O ₄ /Carboxylate Graphene Oxide Nanostructures Constructed by Layer-by-Layer Assembly for Highly Efficient and Magnetically Recyclable Dye Removal. ACS Sustainable Chemistry and Engineering, 2018, 6, 1279-1288.	3.2	283
8	Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High Rates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22280-22286.	4.0	266
9	Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe ₃ O ₄ /Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega, 2019, 4, 1897-1906.	1.6	234
10	Bioinspired Polydopamine Sheathed Nanofibers Containing Carboxylate Graphene Oxide Nanosheet for High-Efficient Dyes Scavenger. ACS Sustainable Chemistry and Engineering, 2017, 5, 4948-4956.	3.2	224
11	Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up. Nature Nanotechnology, 2020, 15, 94-98.	15.6	217
12	Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO ₂ Hybrid Membranes. Angewandte Chemie - International Edition, 2019, 58, 6012-6016.	7.2	205
13	Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Science China Materials, 2018, 61, 728-736.	3.5	203
14	Self-Assembly Reduced Graphene Oxide Nanosheet Hydrogel Fabrication by Anchorage of Chitosan/Silver and Its Potential Efficient Application toward Dye Degradation for Wastewater Treatments. ACS Sustainable Chemistry and Engineering, 2015, 3, 3130-3139.	3.2	202
15	Heavy-Metal Adsorption Behavior of Two-Dimensional Alkalization-Intercalated MXene by First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 20923-20930.	1.5	193
16	Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. Scientific Reports, 2015, 5, 11873.	1.6	175
17	Preparation and properties of high purity Mg–Y biomaterials. Biomaterials, 2010, 31, 398-403.	5.7	170
18	Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. Journal of Materials Chemistry A, 2016, 4, 489-499.	5.2	170

#	Article	IF	CITATIONS
19	Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. Journal of Hazardous Materials, 2018, 342, 732-740.	6.5	169
20	Highly Efficient Lead(II) Sequestration Using Size-Controllable Polydopamine Microspheres with Superior Application Capability and Rapid Capture. ACS Sustainable Chemistry and Engineering, 2017, 5, 4161-4170.	3.2	137
21	Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture. Science China Materials, 2019, 62, 423-436.	3.5	136
22	Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity. Science China Materials, 2020, 63, 2228-2238.	3.5	128
23	Self-Assembled AgNP-Containing Nanocomposites Constructed by Electrospinning as Efficient Dye Photocatalyst Materials for Wastewater Treatment. Nanomaterials, 2018, 8, 35.	1.9	126
24	Facile Preparation of Self-Assembled Layered Double Hydroxide-Based Composite Dye Films As New Chemical Gas Sensors. ACS Sustainable Chemistry and Engineering, 2019, 7, 10888-10899.	3.2	124
25	Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chinese Chemical Letters, 2020, 31, 992-995.	4.8	118
26	Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins. Nano Letters, 2017, 17, 6117-6124.	4.5	114
27	Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. Soft Matter, 2019, 15, 6097-6106.	1.2	105
28	Crystalline Dipeptide Nanobelts Based on Solid–Solid Phase Transformation Self-Assembly and Their Polarization Imaging of Cells. ACS Applied Materials & Interfaces, 2018, 10, 2368-2376.	4.0	98
29	Facile preparation and catalytic performance characterization of AuNPs-loaded hierarchical electrospun composite fibers by solvent vapor annealing treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 283-291.	2.3	97
30	A facile preparation method for new two-component supramolecular hydrogels and their performances in adsorption, catalysis, and stimuli-response. RSC Advances, 2019, 9, 22551-22558.	1.7	88
31	A Coâ€Doped MnO ₂ Catalyst for Liâ€CO ₂ Batteries with Low Overpotential and Ultrahigh Cyclability. Small, 2019, 15, e1902220.	5.2	83
32	Hydrothermal synthesis of hierarchical core–shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment. RSC Advances, 2015, 5, 56279-56285.	1.7	82
33	Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning. Nanomaterials, 2019, 9, 127.	1.9	82
34	Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances. Catalysts, 2019, 9, 559.	1.6	78
35	Facile Preparation of Self-Assembled Polydopamine-Modified Electrospun Fibers for Highly Effective Removal of Organic Dyes. Nanomaterials, 2019, 9, 116.	1.9	78
36	Facile Preparation of Carbon Nanotube-Cu2O Nanocomposites as New Catalyst Materials for Reduction of P-Nitrophenol. Nanoscale Research Letters, 2019, 14, 78.	3.1	74

#	Article	IF	Citations
37	Preparation and Dye Degradation Performances of Self-Assembled MXene-Co ₃ O ₄ Nanocomposites Synthesized via Solvothermal Approach. ACS Omega, 2019, 4, 3946-3953.	1.6	74
38	Preparation of Self-Assembled Composite Films Constructed by Chemically-Modified MXene and Dyes with Surface-Enhanced Raman Scattering Characterization. Nanomaterials, 2019, 9, 284.	1.9	73
39	Preparation and aggregate state regulation of co-assembly graphene oxide-porphyrin composite Langmuir films via surface-modified graphene oxide sheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124023.	2.3	71
40	Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. Science China Materials, 2015, 58, 811-818.	3.5	70
41	Self-Assembled Sandwich-like MXene-Derived Composites as Highly Efficient and Sustainable Catalysts for Wastewater Treatment. Langmuir, 2021, 37, 1267-1278.	1.6	69
42	Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI). Chemical Engineering Journal, 2020, 390, 124667.	6.6	68
43	Selective Cu(II) ion removal from wastewater via surface charged self-assembled polystyrene-Schiff base nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 60-67.	2.3	66
44	Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Applied Surface Science, 2020, 509, 145383.	3.1	65
45	Synthesis of Nanoflower-Shaped MXene Derivative with Unexpected Catalytic Activity for Dehydrogenation of Sodium Alanates. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7611-7618.	4.0	64
46	Facile solvothermal preparation of Fe ₃ O ₄ â€"Ag nanocomposite with excellent catalytic performance. RSC Advances, 2019, 9, 878-883.	1.7	64
47	Effects of backward extrusion on mechanical and degradation properties of Mg–Zn biomaterial. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10, 128-137.	1.5	63
48	Carbon Nanomaterials for Targeted Cancer Therapy Drugs: A Critical Review. Chemical Record, 2019, 19, 502-522.	2.9	63
49	Facile synthesis of self-assembled carbon nanotubes/dye composite films for sensitive electrochemical determination of Cd(II) ions. Nanotechnology, 2018, 29, 445603.	1.3	62
50	Fabrication of hierarchical MXene-based AuNPs-containing core–shell nanocomposites for high efficient catalysts. Green Energy and Environment, 2018, 3, 147-155.	4.7	60
51	Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Scientific Reports, 2014, 4, 3620.	1.6	56
52	Self-Assembled Hydrogels Based on Poly-Cyclodextrin and Poly-Azobenzene Compounds and Applications for Highly Efficient Removal of Bisphenol A and Methylene Blue. ACS Omega, 2018, 3, 11663-11672.	1.6	56
53	Facile preparation of a self-assembled Artemia cyst shell–TiO ₂ –MoS ₂ porous composite structure with highly efficient catalytic reduction of nitro compounds for wastewater treatment. Nanotechnology, 2020, 31, 085603.	1.3	56
54	Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. Journal of Alloys and Compounds, 2016, 684, 504-509.	2.8	55

#	Article	IF	CITATIONS
55	Chiral Nanostructured Composite Films via Solvent-Tuned Self-Assembly and Their Enantioselective Performances. Langmuir, 2019, 35, 3337-3345.	1.6	55
56	Hydrogenated Core–Shell MAX@K ₂ Ti ₈ O ₁₇ Pseudocapacitance with Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Energy Materials, 2017, 7, 1700700.	10.2	54
57	Preparation and enhanced structural integrity of electrospun poly($\hat{l}\mu$ -caprolactone)-based fibers by freezing amorphous chains through thiol-ene click reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 7-13.	2.3	52
58	Elaborate design of polymeric nanocomposites with Mg(ii)-buffering nanochannels for highly efficient and selective removal of heavy metals from water: case study for Cu(ii). Environmental Science: Nano, 2018, 5, 2440-2451.	2.2	52
59	Highly Efficient Phosphate Sequestration in Aqueous Solutions Using Nanomagnesium Hydroxide Modified Polystyrene Materials. Industrial & Engineering Chemistry Research, 2015, 54, 2940-2949.	1.8	50
60	Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5Âwt%Ni alloys with dendrite interface. Journal of Power Sources, 2016, 320, 212-221.	4.0	49
61	Highly effective lead (II) removal by sustainable alkaline activated \hat{l}^2 -lactoglobulin nanofibrils from whey protein. Journal of Cleaner Production, 2020, 255, 120297.	4.6	49
62	Heterogeneous Ti ₃ SiC ₂ @C-Containing Na ₂ Ti ₇ O ₁₅ Architecture for High-Performance Sodium Storage at Elevated Temperatures. ACS Nano, 2017, 11, 12219-12229.	7.3	48
63	Fabrication of hierarchical SrTiO ₃ @MoS ₂ heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions. Nanotechnology, 2020, 31, 205604.	1.3	47
64	Self-assembled copper/cobalt-containing polypyrrole hydrogels for highly efficient ORR electrocatalysts. Journal of Molecular Liquids, 2020, 298, 112010.	2.3	44
65	Facile Synthesis of Self-Assembled NiFe Layered Double Hydroxide-Based Azobenzene Composite Films with Photoisomerization and Chemical Gas Sensor Performances. ACS Omega, 2020, 5, 3689-3698.	1.6	44
66	In Situ Imaging the Oxygen Reduction Reactions of Solid State Na–O⟨sub⟩2⟨/sub⟩ Batteries with CuO Nanowires as the Air Cathode. Nano Letters, 2018, 18, 3723-3730.	4.5	42
67	Interactive contraction nanotwins-stacking faults strengthening mechanism of Mg alloys. Acta Materialia, 2019, 169, 36-44.	3.8	42
68	Interfacial nanostructures and acidichromism behaviors in self-assembled terpyridine derivatives Langmuir-Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564, 1-9.	2.3	38
69	Degradable magnesiumâ€based implant materials with antiâ€inflammatory activity. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1898-1906.	2.1	36
70	Hierarchical AuNPs-Loaded Fe3O4/Polymers Nanocomposites Constructed by Electrospinning with Enhanced and Magnetically Recyclable Catalytic Capacities. Nanomaterials, 2017, 7, 317.	1.9	34
71	Facile Preparation and Highly Efficient Catalytic Performances of Pd-Cu Bimetallic Catalyst Synthesized via Seed-Mediated Method. Nanomaterials, 2020, 10, 6.	1.9	34
72	New insight into the biological treatment by activated sludge: The role of adsorption process. Bioresource Technology, 2014, 153, 160-164.	4.8	33

#	Article	IF	Citations
73	Efficient and sustainable phosphate removal from water by small-sized Al(OH)3 nanocrystals confined in discarded Artemia Cyst-shell: Ultrahigh sorption capacity and rapid sequestration. Science of the Total Environment, 2022, 803, 150087.	3.9	31
74	Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catalysis Today, 2018, 318, 167-174.	2.2	30
75	Highly Efficient Catalytic Performances of Nitro Compounds and Morin via Self-Assembled MXene-Pd Nanocomposites Synthesized through Self-Reduction Strategy. Nanomaterials, 2019, 9, 1009.	1.9	30
76	<i>In Situ</i> Electrochemical Study of Na–O ₂ /CO ₂ Batteries in an Environmental Transmission Electron Microscope. ACS Nano, 2020, 14, 13232-13245.	7.3	27
77	Self-assembled polyelectrolyte-based composite hydrogels with enhanced stretchable and adsorption performances. Journal of Molecular Liquids, 2019, 294, 111576.	2.3	26
78	Structural characteristics of $\{10 < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.gif"> < mml:mover accent="true"> < mml:mrow> < mml:mtext>1 < / mml:mtext> < / mml:mrow> < mml:mo math>1 } contraction twin-twin interaction in$	3.8	26
79	magnesium. Acta Materialia, 2020, 192, 60-66. Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys. Corrosion Science, 2018, 143, 229-239.	3.0	25
80	Lithiation MXene Derivative Skeletons for Wideâ€Temperature Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2101180.	7.8	25
81	Ceramic nanowelding. Nature Communications, 2018, 9, 96.	5.8	24
82	Facile Synthesis of Cu2O nanoparticle-loaded Carbon Nanotubes Composite Catalysts for Reduction of 4-Nitrophenol. Current Nanoscience, 2020, 16, 617-624.	0.7	24
83	Preparation and self-assembly of graphene oxide-dye composite Langmuir films: Nanostructures and aggregations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 793-800.	2.3	21
84	Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579, 123670.	2.3	21
85	Preparation of MoS ₂ -based polydopamine-modified core–shell nanocomposites with elevated adsorption performances. RSC Advances, 2018, 8, 21644-21650.	1.7	19
86	Variable self-assembly and in situ host–guest reaction of beta-cyclodextrin-modified graphene oxide composite Langmuir films with azobenzene compounds. RSC Advances, 2017, 7, 41043-41051.	1.7	18
87	Thermally stable and strong bulk Mg–MgO in situ nanocomposites by reactive cryomilling and high-pressure consolidation. Journal of Materials Science, 2018, 53, 6613-6625.	1.7	18
88	Self-reductive synthesis of MXene/Na _{0.55} Mn _{1.4} Ti _{0.6} O ₄ hybrids for high-performance symmetric lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 7516-7525.	5.2	18
89	Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts. Nanomaterials and Nanotechnology, 2015, 5, 20.	1.2	17
90	Unique and outstanding cadmium sequestration by polystyrene-supported nanosized zirconium hydroxides: a case study. RSC Advances, 2015, 5, 55445-55452.	1.7	17

#	Article	IF	CITATIONS
91	Negative Strain-Rate Sensitivity of Mg Alloys Containing 18R and 14H Long-Period Stacking-Ordered Phases at Intermediate Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3703-3707.	1.1	16
92	Nanoscale coherent interface strengthening of Mg alloys. Nanoscale, 2018, 10, 18028-18035.	2.8	16
93	New insight into the bioinspired sub-10Ânm Sn(HPO4)2 confinement for efficient heavy metal remediation in wastewater. Journal of Colloid and Interface Science, 2022, 609, 676-685.	5.0	16
94	Microstructures, aging behaviour and mechanical properties in hydrogen and chloride media of backward extruded Mg–Y based biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 176-185.	1.5	15
95	Preparation of diamond-based AuNP-modified nanocomposites with elevated catalytic performances. RSC Advances, 2017, 7, 49923-49930.	1.7	15
96	Coherent interface strengthening of ultrahigh pressure heat-treated Mg-Li-Y alloys. Journal of Materials Science and Technology, 2020, 51, 79-83.	5.6	15
97	Selective and Efficient Removal of Fluoride from Water: In Situ Engineered Amyloid Fibril/ZrO ₂ Hybrid Membranes. Angewandte Chemie, 2019, 131, 6073-6077.	1.6	14
98	Self-Assembly and Drug Release Capacities of Organogels via Some Amide Compounds with Aromatic Substituent Headgroups. Materials, 2016, 9, 541.	1.3	13
99	Lithium Cluster Segregation in Coherent Contraction Twin Boundaries of Magnesium Alloys. Acta Materialia, 2020, 201, 477-487.	3.8	13
100	Freestanding MXene–MnO ₂ Films for Li–CO ₂ Cathodes with Low Overpotential and Long-Term Cycling. ACS Applied Energy Materials, 2021, 4, 9961-9968.	2.5	13
101	Accelerated Sorption Diffusion for Cu(II) Retention by Anchorage of Nano-zirconium Dioxide onto Highly charged Polystyrene Material. Scientific Reports, 2015, 5, 10646.	1.6	12
102	Self-Assembled Naphthylidene-Containing Schiff Base Anchored Polystyrene Nanocomposites Targeted for Selective Cu(II) Ion Removal from Wastewater. ACS Omega, 2019, 4, 12098-12106.	1.6	12
103	Efficient Heavy Metal Removal from Water by Polydopamine Confined ZrO ₂ Nanocrystals with Improvements in Nanoparticles Utilization and Ion Diffusion. ACS ES&T Engineering, 2022, 2, 794-806.	3.7	12
104	High degradation rate of Fe-20Mn-based bio-alloys by accumulative cryo-rolling and annealing. Materials Science and Engineering C, 2017, 79, 37-44.	3.8	11
105	Facile fabrication of hierarchical diamond-based AuNPs-modified nanocomposites via layer-by-layer assembly with enhanced catalytic capacities. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 614-623.	2.7	11
106	Non-covalent self-assembly of multi-target polystyrene composite adsorbent with highly efficient Cu(II) ion removal capability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 674-682.	2.3	10
107	Development of High Performance Singleâ€Phase Solid Solution Magnesium Alloy at Low Temperature. Advanced Engineering Materials, 2012, 14, 178-184.	1.6	9
108	Heterojunction-Composited Architecture for Li–O ₂ Batteries with Low Overpotential and Long-Term Cyclability. ACS Applied Energy Materials, 2020, 3, 3789-3797.	2.5	9

#	Article	IF	CITATIONS
109	Preparation, mechanical and degradation properties of Mg–Y-based microwire. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 375-384.	1.5	8
110	Strengthening Precipitate, Thermal Stability, and Mechanical Properties of Melt-Spun Mg-8Gd-3Nd Alloy. Journal of Materials Engineering and Performance, 2014, 23, 250-254.	1.2	6
111	Unique strengthening mechanisms of ultrahigh pressure Mg alloys. Bioactive Materials, 2018, 3, 250-254.	8.6	6
112	Facile Preparation and Enhanced Catalytic Properties of Self-Assembled Pd Nanoparticle-Loaded Nanocomposite Films Synthesized via the Electrospun Approach. ACS Omega, 2019, 4, 8480-8486.	1.6	6
113	In-Situ Atomic-Scale Phase Transformation of Mg under Hydrogen Conditions. Journal of Physical Chemistry C, 2018, 122, 19532-19539.	1.5	5
114	Atomic-scale oxidation mechanisms of single-crystal magnesium. Nanoscale, 2019, 11, 23346-23356.	2.8	5
115	Influences of Y and Y-Rich Mischmetal Additions on Microstructure and Compressive Properties of As-Cast Al-Mg-Mn Alloy. Journal of Materials Engineering and Performance, 2013, 22, 1201-1207.	1.2	4
116	A Lactoglobulin-Composite Self-Healing Coating for Mg Alloys. ACS Applied Bio Materials, 2021, 4, 6843-6852.	2.3	4
117	Realization of long retention properties of quantum conductance through confining the oxygen vacancy diffusion. Applied Physics Reviews, 2022, 9, .	5.5	4
118	Serration Flow Behavior with Abnormal Strain Rate Sensitivity of Fine-Grained Mg-0.8 WtÂPct Ca Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4469-4474.	1.1	3
119	Microstructure and mechanical properties of deformed Mg–Mn–Sn alloys. International Journal of Materials Research, 2015, 106, 307-310.	0.1	3
120	Mg3Y2Ge3O12:Bi3+ UV fluorescent phosphor as the TiO2 "sensitizer―for enhancing the heavy oil viscosity reduction. Ceramics International, 2019, 45, 13112-13118.	2.3	3
121	In Situ Atomic-Scale Oscillation Sublimation of Magnesium under CO ₂ Conditions. Langmuir, 2019, 35, 300-305.	1.6	2
122	Simulation study on the structural and dynamic properties of ethanol confined in nanochannels. New Journal of Chemistry, 2020, 44, 12595-12602.	1.4	2
123	Anomalous sublimation passivation of nanotwinned silver particles. Materials Research Letters, 2020, 8, 195-200.	4.1	2
124	Self-Assembled Composite Langmuir Films via Fluorine-Containing Bola-Type Derivative with Metal lons. Coatings, 2018, 8, 141.	1.2	1
125	Preparation and photocatalytic property of silver nanoparticles using cationic pyridine derivative. Integrated Ferroelectrics, 2016, 169, 15-21.	0.3	0