Ting Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3857825/publications.pdf Version: 2024-02-01

TINC 7HANC

#	Article	IF	CITATIONS
1	Entropy Generation and Consequences of Binary Chemical Reaction on MHD Darcy–Forchheimer Williamson Nanofluid Flow Over Non-Linearly Stretching Surface. Entropy, 2020, 22, 18.	2.2	173
2	Magnetohydrodynamic Darcy–Forchheimer nanofluid flow over a nonlinear stretching sheet. Physica Scripta, 2019, 94, 105221.	2.5	90
3	Existence and Asymptotic Behavior of Global Weak Solutions to a 2D Viscous Liquid-Gas Two-Phase Flow Model. SIAM Journal on Mathematical Analysis, 2010, 42, 1874-1897.	1.9	70
4	Large time behavior of isentropic compressible Navier-Stokes system in <i>â,,</i> ³ . Mathematical Methods in the Applied Sciences, 2011, 34, 670-682.	2.3	69
5	Second grade nanofluidic flow past a convectively heated vertical Riga plate. Physica Scripta, 2019, 94, 125212.	2.5	69
6	Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface. PLoS ONE, 2019, 14, e0221302.	2.5	67
7	Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate. Heliyon, 2019, 5, e01479.	3.2	66
8	Global solutions to the 2D viscous, non-resistive MHD system with large background magnetic field. Journal of Differential Equations, 2016, 260, 5450-5480.	2.2	61
9	Global Existence of Strong Solution for Equations Related to the Incompressible Viscoelastic Fluids in the Critical \$L^p\$ Framework. SIAM Journal on Mathematical Analysis, 2012, 44, 2266-2288.	1.9	58
10	Global Solution to the Incompressible Oldroyd-B Model in the Critical L p Framework: the Case of the Non-Small Coupling Parameter. Archive for Rational Mechanics and Analysis, 2014, 213, 651-687.	2.4	54
11	Global Behavior of Spherically Symmetric Navier–Stokes–Poisson System with Degenerate Viscosity Coefficients. Archive for Rational Mechanics and Analysis, 2009, 191, 195-243.	2.4	52
12	Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37, 1923-1939.	0.9	52
13	Global Behavior of Compressible Navier-Stokes Equations with a Degenerate Viscosity Coefficient. Archive for Rational Mechanics and Analysis, 2006, 182, 223-253.	2.4	51
14	Compressible Navier–Stokes equations with vacuum state in the case of general pressure law. Mathematical Methods in the Applied Sciences, 2006, 29, 1081-1106.	2.3	47
15	A blow-up criterion for a 2D viscous liquid-gas two-phase flow model. Journal of Differential Equations, 2011, 250, 3362-3378.	2.2	42
16	Global solutions of the Navier–Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data. Journal of Differential Equations, 2006, 222, 63-94.	2.2	41
17	Boundary layers for compressible Navier–Stokes equations with density-dependent viscosity and cylindrical symmetry. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2011, 28, 677-709.	1.4	41
18	Global Axisymmetric Solutions to Three-Dimensional Navier–Stokes System. International Mathematics Research Notices, 2014, 2014, 610-642.	1.0	40

#	Article	IF	CITATIONS
19	Influence of Chemical Reaction on Marangoni Convective Flow of Nanoliquid in the Presence of Lorentz Forces and Thermal Radiation: A Numerical Investigation. Journal of Advances in Nanotechnology, 2018, 1, 32-49.	3.2	39
20	Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3, 675-694.	0.8	39
21	Random Data Cauchy Theory for the Generalized Incompressible Navier–Stokes Equations. Journal of Mathematical Fluid Mechanics, 2012, 14, 311-324.	1.0	38
22	Global Small Solutions to a Complex Fluid Model in Three Dimensional. Archive for Rational Mechanics and Analysis, 2015, 216, 905-920.	2.4	38
23	Global Wellposed Problem for the 3-D Incompressible Anisotropic Navier-Stokes Equations in an Anisotropic Space. Communications in Mathematical Physics, 2009, 287, 211-224.	2.2	36
24	Marangoni Effect in Second Grade Forced Convective Flow of Water Based Nanofluid. Journal of Advances in Nanotechnology, 2018, 1, 50-61.	3.2	35
25	Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system. Science China Mathematics, 2012, 55, 159-177.	1.7	23
26	Global solutions of compressible barotropic Navier–Stokes equations with a density-dependent viscosity coefficient. Journal of Mathematical Physics, 2011, 52, .	1.1	22
27	Global Solutions to the Isentropic Compressible NavierStokes Equations with a Class of Large Initial Data. SIAM Journal on Mathematical Analysis, 2018, 50, 4983-5026.	1.9	22
28	Compressible Flows with a Density-Dependent Viscosity Coefficient. SIAM Journal on Mathematical Analysis, 2010, 41, 2453-2488.	1.9	21
29	Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime. Journal of Mathematical Physics, 2012, 53, .	1.1	19
30	A note on compressible Navier–Stokes equations with vacuum state in one dimension. Nonlinear Analysis: Theory, Methods & Applications, 2004, 58, 719-731.	1.1	18
31	Decay estimates for isentropic compressible Navier–Stokes equations in bounded domain. Journal of Mathematical Analysis and Applications, 2012, 386, 939-947.	1.0	18
32	Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space. Journal of Differential Equations, 2011, 251, 3143-3162.	2.2	16
33	GLOBAL EXPONENTIAL STABILITY OF CLASSICAL SOLUTIONS TO THE HYDRODYNAMIC MODEL FOR SEMICONDUCTORS. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1507-1530.	3.3	15
34	Global behavior of spherically symmetric Navier–Stokes equations with density-dependent viscosity. Journal of Differential Equations, 2007, 236, 293-341.	2.2	15
35	Well-posedness for the 3D incompressible nematic liquid crystal system in the critical \$L^p\$ framework. Discrete and Continuous Dynamical Systems, 2015, 36, 371-402.	0.9	15
36	A blow-up criterion for two dimensional compressible viscous heat-conductive flows. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 3130-3141.	1.1	14

#	Article	IF	CITATIONS
37	Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations. Proceedings of the American Mathematical Society, 2011, 139, 2827-2837.	0.8	13
38	Global solutions to the 3D incompressible nematic liquid crystal system. Journal of Differential Equations, 2015, 258, 1519-1547.	2.2	13
39	Discontinuous solutions of the compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum. Journal of Mathematical Analysis and Applications, 2006, 318, 224-245.	1.0	12
40	Global Axisymmetric Solutions of Three Dimensional Inhomogeneous Incompressible Navier–Stokes System with Nonzero Swirl. Archive for Rational Mechanics and Analysis, 2017, 223, 817-843.	2.4	12
41	Almost global existence for 2D magnetohydrodynamics boundary layer system. Mathematical Methods in the Applied Sciences, 2018, 41, 7530-7553.	2.3	12
42	A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure and Applied Analysis, 2008, 7, 987-1016.	0.8	12
43	Global wellposed problem for the 3-D incompressible anisotropic Navier–Stokes equations. Journal Des Mathematiques Pures Et Appliquees, 2008, 90, 413-449.	1.6	11
44	Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete and Continuous Dynamical Systems, 2015, 35, 555-582.	0.9	11
45	Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity. Journal of Mathematical Physics, 2015, 56, .	1.1	10
46	Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl. Nonlinear Analysis: Theory, Methods & Applications, 2018, 166, 48-86.	1.1	10
47	Zero-electron-mass limit of Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2013, 33, 4743-4768.	0.9	10
48	Regularity of the Koch-Tataru solutions to Navier-Stokes system. Science China Mathematics, 2012, 55, 453-464.	1.7	9
49	Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Journal of Differential Equations, 2016, 261, 3519-3550.	2.2	9
50	Global well-posedness for 2D Boussinesq system with general supercritical dissipation. Nonlinear Analysis: Real World Applications, 2016, 27, 326-349.	1.7	8
51	Global Behavior of Spherically Symmetric Navier–Stokes Equations with Degenerate Viscosity Coefficients. SIAM Journal on Mathematical Analysis, 2008, 40, 869-904.	1.9	7
52	Global strong solutions for equations related to the incompressible viscoelastic fluids with a class of large initial data. Nonlinear Analysis: Theory, Methods & Applications, 2014, 100, 59-77.	1.1	7
53	A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. Nonlinear Analysis: Real World Applications, 2009, 10, 2272-2285.	1.7	6
54	Global regularity for generalized anisotropic Navier–Stokes equations. Journal of Mathematical Physics, 2010, 51, 123503.	1.1	6

#	Article	IF	CITATIONS
55	Local well-posedness for 2D incompressible magneto-micropolar boundary layer system. Applicable Analysis, 2021, 100, 206-227.	1.3	6
56	Bilinear Strichartz's type estimates in Besov spaces with application to inhomogeneous nonlinear biharmonic SchrĶdinger equation. Journal of Differential Equations, 2021, 296, 335-368.	2.2	6
57	On the well-posedness for stochastic SchrĶdinger equations with quadratic potential. Chinese Annals of Mathematics Series B, 2011, 32, 711-728.	0.4	5
58	Almost Global Existence for the 3D Prandtl Boundary Layer Equations. Acta Applicandae Mathematicae, 2020, 169, 383-410.	1.0	5
59	Global weak solutions to a 2D compressible non-resistivity MHD system with non-monotone pressure law and nonconstant viscosity. Journal of Mathematical Analysis and Applications, 2021, 502, 125244.	1.0	5
60	Remarks on local regularity of axisymmetric solutions to the 3D Navier–Stokes equations. Communications in Partial Differential Equations, 2022, 47, 1680-1699.	2.2	5
61	Global Existence in Critical Spaces for Density-Dependent Incompressible Viscoelastic Fluids. Acta Applicandae Mathematicae, 2014, 130, 51-80.	1.0	4
62	The global solutions of axisymmetric Navier–Stokes equations with anisotropic initial data. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	1.4	4
63	Local and global existence of pathwise solution for the stochastic Boussinesq equations with multiplicative noises. Stochastic Processes and Their Applications, 2020, 130, 1545-1567.	0.9	4
64	Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators. Discrete and Continuous Dynamical Systems, 2021, 41, 2285-2300.	0.9	4
65	\$ H^2 \$ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28, 777-794.	0.9	4
66	Analytical solutions to the Navier-Stokes equations for non-Newtonian fluid. Applied Mathematics, 2009, 24, 483-489.	1.0	3
67	Density-dependent incompressible viscous fluid flow subject to linearly growing initial data. Applicable Analysis, 2012, 91, 1477-1493.	1.3	3
68	Wellposedness for anisotropic rotating fluid equations. Applied Mathematics, 2012, 27, 9-33.	1.0	3
69	Almost sure existence of global weak solutions for incompressible MHD equations in negative-order Sobolev space. Journal of Differential Equations, 2017, 263, 1611-1642.	2.2	3
70	Local and global strong solutions to the stochastic incompressible Navier-Stokes equations in critical Besov space. Journal of Mathematical Analysis and Applications, 2020, 481, 123472.	1.0	3
71	Local well-posedness of perturbed Navier-Stokes system around Landau solutions. Electronic Research Archive, 2021, 29, 2719-2739.	0.9	3
72	The Cauchy problem for the fourth-order SchrĶdinger equation in Hs. Journal of Mathematical Physics, 2021, 62, 071501.	1,1	3

#	Article	IF	CITATIONS
73	Critical regularity criteria for Navier–Stokes equations in terms of one directional derivative of the velocity. Mathematical Methods in the Applied Sciences, 2021, 44, 5123-5132.	2.3	3
74	Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38, 5261-5295.	0.9	3
75	Global wellâ€posedness result for densityâ€dependent incompressible viscous fluid in with linearly growing initial velocity. Mathematical Methods in the Applied Sciences, 2013, 36, 921-935.	2.3	2
76	The 2D regularized incompressible Boussinesq equations with general critical dissipations. Journal of Mathematical Analysis and Applications, 2018, 461, 868-915.	1.0	2
77	Global Solutions of Modified One-Dimensional Schrödinger Equation. Communications in Mathematical Research, 2021, 37, 350-386.	0.5	2
78	Free boundary problem for compressible flows with densitydependent viscosity coefficients. Communications on Pure and Applied Analysis, 2010, 10, 459-478.	0.8	2
79	On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 6063.	0.9	2
80	Serrin–type regularity criteria for the 3D MHD equations via one velocity component and one magnetic component. Calculus of Variations and Partial Differential Equations, 2022, 61, 1.	1.7	2
81	Remark on compressible Navier–Stokes equations with density-dependent viscosity and discontinuous initial data. Journal of Mathematical Analysis and Applications, 2008, 339, 1413-1424.	1.0	1
82	On the well-posedness for stochastic fourth-order Schrödinger equations. Applied Mathematics, 2011, 26, 307-318.	1.0	1
83	Bifurcations of solutions for the Boussinesq system in. Nonlinear Analysis: Real World Applications, 2013, 14, 314-328.	1.7	1
84	A random dispersion Schrödinger equation with time-oscillating nonlinearity. Journal of Mathematical Analysis and Applications, 2014, 418, 403-414.	1.0	1
85	Global existence of discretely self-similar solutions to the generalized MHD system in Besov space. Journal of Mathematical Physics, 2019, 60, 081515.	1.1	1
86	Local well-posedness and finite time blowup for fourth-order SchrĶdinger equation with complex coefficient. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.9	1
87	Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38, 4745-4765.	0.9	1
88	The pointwise estimates of solutions for the 3D incompressible viscoelastic fluids. Scientia Sinica Mathematica, 2021, 51, 881.	0.2	1
89	Non-formation of vacuum states for Navier-Stokes equations with density-dependent viscosity. Journal of Zhejiang University: Science A, 2007, 8, 1681-1690.	2.4	0
90	Global solutions for \$\$H^s\$\$-critical nonlinear biharmonic Schrödinger equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	1.4	0

#	Article	IF	CITATIONS
91	Convergence of Parareal Algorithms for PDEs with Fractional Laplacian and a Non-Constant Coefficient. East Asian Journal on Applied Mathematics, 2018, 8, 746-763.	0.9	0
92	The Clobal Existence and Averaging Theorem for the Strong Solution of the Stochastic Boussinesq Equations with the Low Froude Number. Journal of Mathematical Fluid Mechanics, 2022, 24, 1.	1.0	0
93	A new improved regularity criterion of solutions to Leray-?-MHD model and Navier-Stokes equation. Proceedings of the American Mathematical Society, 0, , .	0.8	0