
## Johnson Agniswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3857786/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase. Archives of Biochemistry and Biophysics, 2022, 715, 109100.                                                                                             | 1.4 | 1         |
| 2  | A Single-Point Mutation in <scp>d</scp> -Arginine Dehydrogenase Unlocks a Transient Conformational<br>State Resulting in Altered Cofactor Reactivity. Biochemistry, 2021, 60, 711-724.                                                                          | 1.2 | 7         |
| 3  | Novel HIV PR inhibitors with C4-substituted bis-THF and bis-fluoro-benzyl target the two active site mutations of highly drug resistant mutant PRS17. Biochemical and Biophysical Research Communications, 2021, 566, 30-35.                                    | 1.0 | 3         |
| 4  | Highly drugâ€resistant HIVâ€1 protease reveals decreased intraâ€subunit interactions due to clusters of mutations. FEBS Journal, 2020, 287, 3235-3254.                                                                                                          | 2.2 | 9         |
| 5  | Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring<br>P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. Journal of Medicinal Chemistry,<br>2020, 63, 4867-4879.                             | 2.9 | 19        |
| 6  | Potent antiviral HIV-1 protease inhibitor combats highly drug resistant mutant PR20. Biochemical and<br>Biophysical Research Communications, 2019, 519, 61-66.                                                                                                  | 1.0 | 13        |
| 7  | Highly Drug-Resistant HIV-1 Protease Mutant PRS17 Shows Enhanced Binding to Substrate Analogues.<br>ACS Omega, 2019, 4, 8707-8719.                                                                                                                              | 1.6 | 16        |
| 8  | Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, I47V and V82I. Biochemical and Biophysical Research Communications, 2019, 514, 974-978.                                                             | 1.0 | 18        |
| 9  | Steric hindrance controls pyridine nucleotide specificity of a flavinâ€dependent NADH:quinone<br>oxidoreductase. Protein Science, 2019, 28, 167-175.                                                                                                            | 3.1 | 6         |
| 10 | Crystal structure of yeast nitronate monooxygenase from Cyberlindnera saturnus. Proteins:<br>Structure, Function and Bioinformatics, 2018, 86, 599-605.                                                                                                         | 1.5 | 8         |
| 11 | Design and Synthesis of Potent HIV-1 Protease Inhibitors Containing Bicyclic Oxazolidinone Scaffold<br>as the P2 Ligands: Structure–Activity Studies and Biological and X-ray Structural Studies. Journal of<br>Medicinal Chemistry, 2018, 61, 9722-9737.       | 2.9 | 24        |
| 12 | Design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors incorporating<br>aminothiochromane and aminotetrahydronaphthalene carboxamide derivatives as the P2 ligands.<br>European Journal of Medicinal Chemistry, 2018, 160, 171-182.           | 2.6 | 4         |
| 13 | Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring<br>Systems as Novel P2 Ligands: Structure–Activity Studies, Biological and X-ray Structural Analysis.<br>Journal of Medicinal Chemistry, 2018, 61, 4561-4577.   | 2.9 | 31        |
| 14 | Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands:<br>Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex.<br>Bioorganic and Medicinal Chemistry, 2017, 25, 5114-5127. | 1.4 | 16        |
| 15 | Design and Development of Highly Potent HIV-1 Protease Inhibitors with a Crown-Like Oxotricyclic<br>Core as the P2-Ligand To Combat Multidrug-Resistant HIV Variants. Journal of Medicinal Chemistry,<br>2017, 60, 4267-4278.                                   | 2.9 | 64        |
| 16 | Probing Lipophilic Adamantyl Group as the P1-Ligand for HIV-1 Protease Inhibitors: Design, Synthesis,<br>Protein X-ray Structural Studies, and Biological Evaluation. Journal of Medicinal Chemistry, 2016, 59,<br>6826-6837.                                   | 2.9 | 15        |
| 17 | In vitro heme biotransformation by the HupZ enzyme from Group A streptococcus. BioMetals, 2016, 29, 593-609.                                                                                                                                                    | 1.8 | 27        |
| 18 | Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic<br>Effect of Distal Mutations on Flap Dynamics. PLoS ONE, 2016, 11, e0168616.                                                                                | 1.1 | 39        |

JOHNSON AGNISWAMY

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Substituted Bis-THF Protease Inhibitors with Improved Potency against Highly Resistant Mature HIV-1<br>Protease PR20. Journal of Medicinal Chemistry, 2015, 58, 5088-5095.                                                                                            | 2.9 | 8         |
| 20 | Structure-Based Design of Potent HIV-1 Protease Inhibitors with Modified P1-Biphenyl Ligands:<br>Synthesis, Biological Evaluation, and Enzyme–Inhibitor X-ray Structural Studies. Journal of Medicinal<br>Chemistry, 2015, 58, 5334-5343.                             | 2.9 | 21        |
| 21 | Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to<br>Enhance Backbone-Binding Interactions: Synthesis, Biological Evaluation, and Protein–Ligand X-ray<br>Studies. Journal of Medicinal Chemistry, 2015, 58, 6994-7006. | 2.9 | 13        |
| 22 | Conformational variation of an extreme drug resistant mutant of HIV protease. Journal of Molecular<br>Graphics and Modelling, 2015, 62, 87-96.                                                                                                                        | 1.3 | 22        |
| 23 | Extreme Multidrug Resistant HIV-1 Protease with 20 Mutations Is Resistant to Novel Protease<br>Inhibitors with P1′-Pyrrolidinone or P2-Tris-tetrahydrofuran. Journal of Medicinal Chemistry, 2013, 56,<br>4017-4027.                                                  | 2.9 | 34        |
| 24 | Terminal Interface Conformations Modulate Dimer Stability Prior to Amino Terminal Autoprocessing of HIV-1 Protease. Biochemistry, 2012, 51, 1041-1050.                                                                                                                | 1.2 | 29        |
| 25 | HIV-1 Protease with 20 Mutations Exhibits Extreme Resistance to Clinical Inhibitors through Coordinated Structural Rearrangements. Biochemistry, 2012, 51, 2819-2828.                                                                                                 | 1.2 | 78        |
| 26 | Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIVâ€1<br>protease: Relevance to drug resistance. Protein Science, 2010, 19, 2055-2072.                                                                                      | 3.1 | 22        |
| 27 | HIV-1 Protease: Structural Perspectives on Drug Resistance. Viruses, 2009, 1, 1110-1136.                                                                                                                                                                              | 1.5 | 128       |
| 28 | Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.<br>Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 741-752.                                                                           | 2.2 | 22        |
| 29 | Conformational similarity in the activation of caspase-3 and -7 revealed by the unliganded and inhibited structures of caspase-7. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1135-1144.                                                  | 2.2 | 25        |
| 30 | Plasticity of S2–S4 specificity pockets of executioner caspaseâ€7 revealed by structural and kinetic analysis. FEBS Journal, 2007, 274, 4752-4765.                                                                                                                    | 2.2 | 45        |