Keisuke Okita

List of Publications by Citations

Source: https://exaly.com/author-pdf/385774/keisuke-okita-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15,260 36 40 24 h-index g-index citations papers 6.29 17,007 15.2 40 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
36	Generation of germline-competent induced pluripotent stem cells. <i>Nature</i> , 2007 , 448, 313-7	50.4	3548
35	Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. <i>Nature Biotechnology</i> , 2008 , 26, 101-6	44.5	2239
34	Generation of mouse induced pluripotent stem cells without viral vectors. <i>Science</i> , 2008 , 322, 949-53	33.3	1595
33	A more efficient method to generate integration-free human iPS cells. <i>Nature Methods</i> , 2011 , 8, 409-12	21.6	1358
32	Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. <i>Nature</i> , 2009 , 460, 1132-5	50.4	1073
31	Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 2008, 321, 699-	793 3	841
30	Induction of pluripotent stem cells from fibroblast cultures. <i>Nature Protocols</i> , 2007 , 2, 3081-9	18.8	822
29	Variation in the safety of induced pluripotent stem cell lines. <i>Nature Biotechnology</i> , 2009 , 27, 743-5	44.5	702
28	Modeling Alzheimerts disease with iPSCs reveals stress phenotypes associated with intracellular All and differential drug responsiveness. <i>Cell Stem Cell</i> , 2013 , 12, 487-96	18	539
27	An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. <i>Stem Cells</i> , 2013 , 31, 458-66	5.8	451
26	Drug screening for ALS using patient-specific induced pluripotent stem cells. <i>Science Translational Medicine</i> , 2012 , 4, 145ra104	17.5	390
25	Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 12538-43	11.5	231
24	Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. <i>Cell Stem Cell</i> , 2019 , 24, 566-578.e7	18	206
23	Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate. <i>Stem Cell Reports</i> , 2013 , 1, 283-92	8	196
22	Generation of mouse-induced pluripotent stem cells with plasmid vectors. <i>Nature Protocols</i> , 2010 , 5, 418-28	18.8	174
21	Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 20569-	·7 ¹ 4 ^{1.5}	159
20	Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. <i>Cell Stem Cell</i> , 2016 , 19, 341-54	18	127

(2013-2017)

19	MHC matching improves engraftment of iPSC-derived neurons in non-human primates. <i>Nature Communications</i> , 2017 , 8, 385	17.4	116
18	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. <i>Physiological Reviews</i> , 2019 , 99, 79-114	47.9	111
17	Intracellular signaling pathways regulating pluripotency of embryonic stem cells. <i>Current Stem Cell Research and Therapy</i> , 2006 , 1, 103-11	3.6	92
16	Induction of pluripotency by defined factors. Experimental Cell Research, 2010, 316, 2565-70	4.2	66
15	Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. <i>Scientific Reports</i> , 2015 , 5, 10434	4.9	60
14	Clonal variation of human induced pluripotent stem cells for induction into the germ cell fate. <i>Biology of Reproduction</i> , 2017 , 96, 1154-1166	3.9	31
13	KLF4 N-terminal variance modulates induced reprogramming to pluripotency. <i>Stem Cell Reports</i> , 2015 , 4, 727-43	8	27
12	Human and mouse induced pluripotent stem cells are differentially reprogrammed in response to kinase inhibitors. <i>Stem Cells and Development</i> , 2012 , 21, 1287-98	4.4	20
11	Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. <i>Nature Communications</i> , 2018 , 9, 1387	17.4	18
10	Methods for iPS cell generation for basic research and clinical applications. <i>Biotechnology Journal</i> , 2012 , 7, 789-97	5.6	16
9	A novel ADPKD model using kidney organoids derived from disease-specific human iPSCs. <i>Biochemical and Biophysical Research Communications</i> , 2020 , 529, 1186-1194	3.4	15
8	Generation and characterization of induced pluripotent stem cells from Aid-deficient mice. <i>PLoS ONE</i> , 2014 , 9, e94735	3.7	14
7	Transcriptional Analysis of Intravenous Immunoglobulin Resistance in Kawasaki Disease Using an Induced Pluripotent Stem Cell Disease Model. <i>Circulation Journal</i> , 2016 , 81, 110-118	2.9	10
6	iPS cells for transplantation. Current Opinion in Organ Transplantation, 2011 , 16, 96-100	2.5	7
5	Screening of Human cDNA Library Reveals Two differentiation-Related Genes, HHEX and HLX, as Promoters of Early Phase Reprogramming toward Pluripotency. <i>Stem Cells</i> , 2016 , 34, 2661-2669	5.8	4
4	Pluripotent stem cell model of Shwachman-Diamond syndrome reveals apoptotic predisposition of hemoangiogenic progenitors. <i>Scientific Reports</i> , 2020 , 10, 14859	4.9	1
3	Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripotent stem cells. <i>Cell Reports</i> , 2021 , 37, 109909	10.6	0
2	Induced Pluripotent Stem Cells 2013 , 197-218		

Establishment and Characterization of Induced Pluripotent (iPS) Stem Cells Derived from Immortalized B Cells of Cardiac Channelopathy Patients. *Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery*, **2015**, 31, 313-319

О