Keisuke Okita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385774/publications.pdf Version: 2024-02-01

KEISLIKE OKITA

#	Article	IF	CITATIONS
1	Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448, 313-317.	13.7	4,019
2	Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008, 26, 101-106.	9.4	2,583
3	Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science, 2008, 322, 949-953.	6.0	1,857
4	A more efficient method to generate integration-free human iPS cells. Nature Methods, 2011, 8, 409-412.	9.0	1,736
5	Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 2009, 460, 1132-1135.	13.7	1,220
6	Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science, 2008, 321, 699-702.	6.0	967
7	Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2007, 2, 3081-3089.	5.5	945
8	Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 2009, 27, 743-745.	9.4	811
9	Modeling Alzheimer's Disease with iPSCs Reveals Stress Phenotypes Associated with Intracellular Aβ and Differential Drug Responsiveness. Cell Stem Cell, 2013, 12, 487-496.	5.2	652
10	An Efficient Nonviral Method to Generate Integration-Free Human-Induced Pluripotent Stem Cells from Cord Blood and Peripheral Blood Cells. Stem Cells, 2013, 31, 458-466.	1.4	582
11	Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells. Science Translational Medicine, 2012, 4, 145ra104.	5.8	465
12	Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell, 2019, 24, 566-578.e7.	5.2	356
13	Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12538-12543.	3.3	277
14	Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate. Stem Cell Reports, 2013, 1, 283-292.	2.3	233
15	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	13.1	230
16	Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20569-20574.	3.3	206
17	Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nature Protocols, 2010, 5, 418-428.	5.5	200
18	Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. Cell Stem Cell, 2016, 19, 341-354.	5.2	179

KEISUKE OKITA

#	Article	IF	CITATIONS
19	MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nature Communications, 2017, 8, 385.	5.8	178
20	Intracellular Signaling Pathways Regulating Pluripotency of Embryonic Stem Cells. Current Stem Cell Research and Therapy, 2006, 1, 103-111.	0.6	108
21	Induction of pluripotency by defined factors. Experimental Cell Research, 2010, 316, 2565-2570.	1.2	77
22	Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Scientific Reports, 2015, 5, 10434.	1.6	73
23	Clonal variation of human induced pluripotent stem cells for induction into the germ cell fateâ€. Biology of Reproduction, 2017, 96, 1154-1166.	1.2	48
24	A novel ADPKD model using kidney organoids derived from disease-specific human iPSCs. Biochemical and Biophysical Research Communications, 2020, 529, 1186-1194.	1.0	38
25	KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency. Stem Cell Reports, 2015, 4, 727-743.	2.3	35
26	Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. Nature Communications, 2018, 9, 1387.	5.8	35
27	Methods for iPS cell generation for basic research and clinical applications. Biotechnology Journal, 2012, 7, 789-797.	1.8	24
28	Human and Mouse Induced Pluripotent Stem Cells Are Differentially Reprogrammed in Response to Kinase Inhibitors. Stem Cells and Development, 2012, 21, 1287-1298.	1.1	21
29	Generation and Characterization of Induced Pluripotent Stem Cells from Aid-Deficient Mice. PLoS ONE, 2014, 9, e94735.	1.1	17
30	Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripotent stem cells. Cell Reports, 2021, 37, 109909.	2.9	14
31	Transcriptional Analysis of Intravenous Immunoglobulin Resistance in Kawasaki Disease Using an Induced Pluripotent Stem Cell Disease Model. Circulation Journal, 2017, 81, 110-118.	0.7	11
32	iPS cells for transplantation. Current Opinion in Organ Transplantation, 2011, 16, 96-100.	0.8	8
33	Screening of Human cDNA Library Reveals Two differentiation-Related Genes,HHEXandHLX, as Promoters of Early Phase Reprogramming toward Pluripotency. Stem Cells, 2016, 34, 2661-2669.	1.4	8
34	Pluripotent stem cell model of Shwachman–Diamond syndrome reveals apoptotic predisposition of hemoangiogenic progenitors. Scientific Reports, 2020, 10, 14859.	1.6	4
35	Induced Pluripotent Stem Cell-Derived Cardiomyocytes with SCN5A R1623Q Mutation Associated with Severe Long QT Syndrome in Fetuses and Neonates Recapitulates Pathophysiological Phenotypes. Biology, 2021, 10, 1062.	1.3	4
36	Generation and Gene Expression Profiles of Grevy's Zebra Induced Pluripotent Stem Cells. Stem Cells and Development, 2022, 31, 250-257.	1.1	3

#	Article	IF	CITATIONS
37	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
38	iPS Cell Induction from Human Non-T, B cells from Peripheral Blood. Bio-protocol, 2013, 3, .	0.2	0
39	Establishment and Characterization of Induced Pluripotent (iPS) Stem Cells Derived from Immortalized B Cells of Cardiac Channelopathy Patients. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2015, 31, 313-319.	0.0	0