Gary A Baker

List of Publications by Citations

Source: https://exaly.com/author-pdf/3857385/gary-a-baker-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 301
 19,910
 66
 133

 papers
 citations
 h-index
 g-index

 316
 21,703
 5.6
 7.25

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
301	Luminescent carbon nanodots: emergent nanolights. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6726-44	16.4	3586
300	Deep eutectic solvents: sustainable media for nanoscale and functional materials. <i>Accounts of Chemical Research</i> , 2014 , 47, 2299-308	24.3	560
299	Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. <i>Chemical Society Reviews</i> , 2012 , 41, 4030-66	58.5	450
298	Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. <i>Green Chemistry</i> , 2008 , 10, 696	10	400
297	Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. <i>Journal of Biotechnology</i> , 2009 , 139, 47-54	3.7	386
296	Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4596-7	16.4	371
295	An analytical view of ionic liquids. <i>Analyst, The</i> , 2005 , 130, 800-8	5	370
294	Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 81-92	3.4	358
293	Deep Eutectic Solvents: A Review of Fundamentals and Applications. <i>Chemical Reviews</i> , 2021 , 121, 123	2 -18. 85	358
292	The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. <i>Green Chemistry</i> , 2007 , 9, 449	10	357
291	Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 382, 1751-70	4.4	356
290	Solvation and rotational dynamics of coumarin 153 in ionic liquids: comparisons to conventional solvents. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 7291-302	3.4	278
289	Structure and magnetic behavior of transition metal based ionic liquids. <i>Chemical Communications</i> , 2008 , 447-9	5.8	266
288	Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. <i>Chemical Communications</i> , 2010 , 46, 4487-9	5.8	264
287	Density and Surface Tension Measurements of Imidazolium-, Quaternary Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids: Data and Correlations. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 2306-2314	2.8	249
286	Measurements of the complete solvation response in ionic liquids. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4978-89	3.4	210
285	Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. <i>Journal of Chemical Technology and Biotechnology</i> , 2013 , 88, 3-12	3.5	206

(2016-2011)

284	New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 1908-16	3.9	204
283	Temperature-dependent microscopic solvent properties of <code>dryland wetl</code> 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with ET(30) and Kamlet faft polarity scales. <i>Green Chemistry</i> , 2002, 4, 165-169	10	204
282	Fluorescence studies of protein thermostability in ionic liquids. <i>Chemical Communications</i> , 2004 , 940-1	5.8	198
281	The Cybotactic Region Surrounding Fluorescent Probes Dissolved in 1-Butyl-3-methylimidazolium Hexafluorophosphate: Effects of Temperature and Added Carbon Dioxide. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 9663-9668	3.4	197
280	Reversible and robust CO2 capture by equimolar task-specific ionic liquid uperbase mixtures. <i>Green Chemistry</i> , 2010 , 12, 870	10	172
279	Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation. <i>Journal of Membrane Science</i> , 2010 , 353, 177-183	9.6	172
278	Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. <i>Biophysical Journal</i> , 1998 , 75, 1084-96	2.9	164
277	Protease activation in glycerol-based deep eutectic solvents. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2011 , 72, 163-167		157
276	Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2117-2123	8.3	154
275	Hydrophobic Brfisted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12784-5	5 16.4	150
274	Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 10077-81	3.4	148
273	Partition Coefficients of Organic Compounds in New Imidazolium and Tetralkylammonium Based Ionic Liquids Using Inverse Gas Chromatography. <i>Journal of Chemical & Data, 2010, 234-242</i>	2.8	136
272	Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. <i>Chemistry of Materials</i> , 2018 , 30, 1878-1887	9.6	135
271	Two-Photon Absorption and Excited-State Energy-Transfer Properties of a New Multibranched Molecule. <i>Chemistry of Materials</i> , 2001 , 13, 4071-4076	9.6	135
270	Probing solute and solvent interactions within binary ionic liquid mixtures. <i>New Journal of Chemistry</i> , 2003 , 27, 1706	3.6	134
269	Surface confined ionic liquid as a stationary phase for HPLC. <i>Analyst, The</i> , 2006 , 131, 1000-5	5	132
268	Aqueous Ionic Liquids and Deep Eutectic Solvents for Cellulosic Biomass Pretreatment and Saccharification. <i>RSC Advances</i> , 2014 , 4, 10586-10596	3.7	129
267	Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. <i>Green Chemistry</i> , 2016 , 18, 243-250	10	128

266	Communication: X-ray scattering from ionic liquids with pyrrolidinium cations. <i>Journal of Chemical Physics</i> , 2011 , 134, 121101	3.9	117
265	Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: A Combined Atomistic Simulation and Small-Angle X-ray Scattering Study. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 125-130	6.4	112
264	A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids. <i>Analyst, The,</i> 2004 , 129, 890-2	5	106
263	The emerging roles of carbon dots in solar photovoltaics: a critical review. <i>Environmental Science:</i> Nano, 2017 , 4, 1216-1263	7.1	104
262	Small-angle neutron scattering studies of model protein denaturation in aqueous solutions of the ionic liquid 1-butyl-3-methylimidazolium chloride. <i>Chemical Engineering Journal</i> , 2009 , 147, 6-12	14.7	100
261	PEG-functionalized ionic liquids for cellulose dissolution and saccharification. <i>Green Chemistry</i> , 2012 , 14, 2922	10	99
260	Solute diffusion in ionic liquids, NMR measurements and comparisons to conventional solvents. Journal of Physical Chemistry B, 2013 , 117, 11697-708	3.4	97
259	Quantum Chemical Insight into the Interactions and Thermodynamics Present in Choline Chloride Based Deep Eutectic Solvents. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 6739-46	3.4	96
258	Limited thermal stability of imidazolium and pyrrolidinium ionic liquids. <i>Thermochimica Acta</i> , 2009 , 491, 118-120	2.9	96
257	Noncontact two-color luminescence thermometry based on intramolecular luminophore cyclization within an ionic liquid. <i>Chemical Communications</i> , 2003 , 2932-3	5.8	95
256	Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 1050-1057	2.9	93
255	Effects of Solubilized Water on the Relaxation Dynamics Surrounding 6-Propionyl-2-(N,N-dimethylamino)naphthalene Dissolved in 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298 K. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6457-6463	3.9	93
254	Ultrastable superbase-derived protic ionic liquids. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 4181-3	3.4	92
253	Correlation between the fluorescent response of microfluidity probes and the water content and viscosity of ionic liquid and water mixtures. <i>Analyst, The</i> , 2004 , 129, 569-73	5	92
252	Effect of ionic liquid properties on lipase stabilization under microwave irradiation. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2009 , 57, 149-157		91
251	Multiprobe spectroscopic evidence for "hyperpolarity" within 1-butyl-3-methylimidazolium hexafluorophosphate mixtures with tetraethylene glycol. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 14927-36	3.4	85
250	Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. II. Effects of core heteroatoms and meso-substituents on biological activity. <i>Journal of Medicinal Chemistry</i> , 2002 , 45, 449-61	8.3	81
249	Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 1261-1267	3.4	79

(2006-2011)

248	Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor. <i>Analytical Chemistry</i> , 2011 , 83, 7066-73	7.8	78	
247	Near-infrared fluorescent nanoGUMBOS for biomedical imaging. <i>ACS Nano</i> , 2009 , 3, 3854-60	16.7	77	
246	Activity Coefficients at Infinite Dilution of Organic Compounds in Trihexyl(tetradecyl)phosphonium Bis(trifluoromethylsulfonyl)imide Using Inverse Gas Chromatography. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 977-985	2.8	76	
245	A Simple Colorimetric Assay of Ionic Liquid Hydrolytic Stability. <i>Australian Journal of Chemistry</i> , 2005 , 58, 174	1.2	76	
244	Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent. <i>Langmuir</i> , 2014 , 30, 13191-8	4	75	
243	Study of Ether-, Alcohol-, or Cyano-Functionalized Ionic Liquids Using Inverse Gas Chromatography. Journal of Chemical & Data, 2010, 55, 2434-2443	2.8	75	
242	Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. <i>Nanoscale</i> , 2015 , 7, 4338-53	7.7	73	
241	Oxidative Desulfurization of Fuels Using Ionic Liquids: A Review. <i>Frontiers of Chemical Science and Engineering</i> , 2015 , 9, 262-279	4.5	73	
240	Ionic liquid-induced unprecedented size enhancement of aggregates within aqueous sodium dodecylbenzene sulfonate. <i>Langmuir</i> , 2010 , 26, 17821-6	4	73	
239	Tuning Task-Specific Ionic Liquids for the Extractive Desulfurization of Liquid Fuel. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4771-4780	8.3	73	
238	Fluorescence, Phosphorescence, and Chemiluminescence. <i>Analytical Chemistry</i> , 2016 , 88, 170-202	7.8	72	
237	Activity Coefficients at Infinite Dilution of Organic Compounds in Four New Imidazolium-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 3106-3114	2.8	72	
236	Dendrimers Functionalized with a Single Fluorescent Dansyl Group Attached Dff Center Synthesis and Photophysical Studies. <i>Journal of the American Chemical Society</i> , 2000 , 122, 6139-6144	16.4	69	
235	Bimolecular electron transfer in ionic liquids: are reaction rates anomalously high?. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 1370-84	3.4	66	
234	Effects of temperature on calcium-sensitive fluorescent probes. <i>Biophysical Journal</i> , 2000 , 78, 2116-26	2.9	66	
233	Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanoGUMBOS. <i>Langmuir</i> , 2010 , 26, 12867-76	4	65	
232	Characterization of the influence of the ionic liquid 1-butyl-3-methylimidazolium chloride on the structure and thermal stability of green fluorescent protein. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 13866-71	3.4	65	
231	Brlsted acidic room temperature ionic liquids derived from N,N-dimethylformamide and similar protophilic amides. <i>Green Chemistry</i> , 2006 , 8, 599-602	10	64	

230	Differential Microscopic Mobility of Components within a Deep Eutectic Solvent. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2924-8	6.4	63
229	Dynamics of loop 1 of domain I in human serum albumin when dissolved in ionic liquids. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 12825-30	3.4	63
228	Effects of dopant concentration and annealing temperature on the phosphorescence from Zn2SiO4: Mn2+ nanocrystals. <i>Journal of Luminescence</i> , 2005 , 111, 105-111	3.8	63
227	Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. <i>Biotechnology Progress</i> , 2010 , 26, 127-33	2.8	62
226	Activity Coefficients at Infinite Dilution for Organic Solutes Dissolved in Three 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Bearing Short Linear Alkyl Side Chains of Three to Five Carbons. <i>Journal of Chemical & Data</i> , 58, 2210-22	2.8 2 218	61
225	Effects of Poly(ethylene glycol) Doping on the Behavior of Pyrene, Rhodamine 6G, and Acrylodan-Labeled Bovine Serum Albumin Sequestered within Tetramethylorthosilane-Derived Sol-Gel-Processed Composites. <i>Journal of Sol-Gel Science and Technology</i> , 1998 , 11, 43-54	2.3	61
224	Activity Coefficients at Infinite Dilution for Organic Compounds Dissolved in 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Having Six-, Eight-, and Ten-Carbon Alkyl Chains. <i>Journal of Chemical & Description of Chemical Camp; Engineering Data</i> , 2012 , 57, 3510-3518	2.8	59
223	Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 597-625	7.8	58
222	'Liquid litmus': chemosensory pH-responsive photonic ionic liquids. <i>Chemical Communications</i> , 2011 , 47, 4775-7	5.8	58
221	Cation Cross-Linked Ionic Liquids as Anion-Exchange Materials. <i>Chemistry of Materials</i> , 2009 , 21, 4756-47	7 5 &	58
220	Fluorescence correlation spectroscopy evidence for structural heterogeneity in ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 12395-8	3.6	56
219	Affinity and Mobility of Polyclonal Anti-Dansyl Antibodies Sequestered within Sol L el-Derived Biogels. <i>Chemistry of Materials</i> , 2000 , 12, 1142-1147	9.6	56
218	Kinetics and thermodynamics of free flavins and the flavin-based redox active site within glucose oxidase dissolved in solution or sequestered within a sol-gel-derived glass. <i>Analytical Chemistry</i> , 1999 , 71, 1215-24	7.8	55
217	Protein-templated gold nanoclusters sequestered within sol-gel thin films for the selective and ratiometric luminescence recognition of Hg2+. <i>Nanoscale</i> , 2014 , 6, 5425-31	7.7	52
216	Performance of Cholesterol Oxidase Sequestered within Reverse Micelles Formed in Supercritical Carbon Dioxide <i>Langmuir</i> , 2000 , 16, 4901-4905	4	51
215	Ionic liquid-controlled J- versus H-aggregation of cyanine dyes. Chemical Communications, 2011 , 47, 473	0 5 28	50
214	Fluorescence correlation spectroscopic studies of diffusion within the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. <i>Analyst, The,</i> 2003 , 128, 786-9	5	50
213	Carbon dot reduced bimetallic nanoparticles: size and surface plasmon resonance tunability for enhanced catalytic applications. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16354-16360	13	49

212	Anion-controlled morphologies and spectral features of cyanine-based nanoGUMBOSan improved photosensitizer. <i>Nanoscale</i> , 2012 , 4, 5031-8	7.7	49	
211	Partition Coefficients of Organic Compounds in Four New Tetraalkylammonium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Using Inverse Gas Chromatography. <i>Journal of Chemical & Data</i> , 2011, 56, 3688-3697	2.8	49	
210	Efficient and Selective Extraction of 99mTcO4lFrom Aqueous Media Using Hydrophobic Deep Eutectic Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 13656-13661	8.3	48	
209	Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review. Journal of Fluorescence, 2012 , 22, 1313-43	2.4	47	
208	Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. <i>Analytical Chemistry</i> , 2010 , 82, 4865-94	7.8	46	
207	Multiprobe spectroscopic investigation of molecular-level behavior within aqueous 1-butyl-3-methylimidazolium tetrafluoroborate. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 3088-98	3.4	46	
206	Controllable formation of ionic liquid micro- and nanoparticles via a melt-emulsion-quench approach. <i>Nano Letters</i> , 2008 , 8, 897-901	11.5	46	
205	Quantum Chemical Evaluation of Deep Eutectic Solvents for the Extractive Desulfurization of Fuel. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7525-7531	8.3	45	
204	Sum frequency generation studies of ammonium and pyrrolidinium ionic liquids based on the bis-trifluoromethanesulfonimide anion. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 1676-84	3.4	43	
203	Multinuclear copper(I) and silver(I) amidinate complexes: synthesis, luminescence, and CS2 insertion reactivity. <i>Inorganic Chemistry</i> , 2014 , 53, 11357-66	5.1	42	
202	Differential solute gas response in ionic-liquid-based QCM arrays: elucidating design factors responsible for discriminative explosive gas sensing. <i>Analytical Chemistry</i> , 2011 , 83, 7823-33	7.8	42	
201	Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers. <i>Analytical Chemistry</i> , 2008 , 80, 4860-5	7.8	42	
200	Ionic Liquid-Assisted Synthesis of Nanoscale (MoS)(SnO) on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Applied Materials & Description Action</i> (MoS) (SnO) on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Applied Materials & Description</i> (MoS) (SnO) on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Applied Materials & Description</i> (MoS) (SnO) on Reduced Graphene Oxide for the Electrocatalytic Hydrogen Evolution Reaction.	72 ·5	41	
199	Synthesis of Variable-Sized Fe3O4 Nanocrystals by Visible Light Irradiation at Room Temperature. Journal of Physical Chemistry C, 2010 , 114, 13409-13413	3.8	41	
198	Activity coefficients at infinite dilution for organic solutes dissolved in two 1-alkylquinuclidinium bis(trifluoromethylsulfonyl)imides bearing alkyl side chains of six and eight carbons. <i>Journal of Molecular Liquids</i> , 2016 , 215, 176-184	6	39	
197	In silico free energy predictions for ionic liquid-assisted exfoliation of a graphene bilayer into individual graphene nanosheets. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 7929-33	3.6	39	
196	Dendrimers Functionalized with a Single Pyrene Label: Synthesis, Photophysics, and Fluorescence Quenching. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 8649-8656	3.4	39	
195	Elucidating Interactions Between Ionic Liquids and Polycyclic Aromatic Hydrocarbons by Quantum Chemical Calculations. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4521-4532	3.8	38	

194	Extending the reach of immunoassays to optically dense specimens by using two-photon excited fluorescence polarization. <i>Analytical Chemistry</i> , 2000 , 72, 5748-52	7.8	38
193	Capitalizing on the High Mass Accuracy of Electrospray Ionization Fourier Transform Mass Spectrometry for Synthetic Polymer Characterization: A Detailed Investigation of Poly(dimethylsiloxane). <i>Macromolecules</i> , 1999 , 32, 4411-4418	5.5	38
192	Carbazole-Derived Group of Uniform Materials Based on Organic Salts: Solid State Fluorescent Analogues of Ionic Liquids for Potential Applications in Organic-Based Blue Light-Emitting Diodes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 2312-2320	3.8	37
191	Ultrafine sputter-deposited Pt nanoparticles for triiodide reduction in dye-sensitized solar cells: impact of nanoparticle size, crystallinity and surface coverage on catalytic activity. <i>Nanotechnology</i> , 2012 , 23, 485405	3.4	37
190	An unusual slowdown of fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. <i>Europhysics Letters</i> , 2013 , 102, 16004	1.6	37
189	Magnetic and nonmagnetic nanoparticles from a group of uniform materials based on organic salts. <i>ACS Nano</i> , 2009 , 3, 3244-50	16.7	37
188	Fluorescent single walled carbon nanotube/silica composite materials. ACS Nano, 2008, 2, 2283-90	16.7	37
187	Linkage and redox isomerism in ruthenium complexes of catecholate, semiquinone, and o-acylphenolate ligands derived from 1,2-dihydroxy-9,10-anthracenedione (alizarin) and related species: syntheses, characterizations, and photophysics. <i>Inorganic Chemistry</i> , 2000 , 39, 5807-16	5.1	37
186	Methane-oxygen electrochemical coupling in an ionic liquid: a robust sensor for simultaneous quantification. <i>Analyst, The</i> , 2014 , 139, 5140-7	5	36
185	Pronounced hydrogen bonding giving rise to apparent probe hyperpolarity in ionic liquid mixtures with 2,2,2-trifluoroethanol. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 1360-9	3.4	36
184	Sputter-deposition of silver nanoparticles into ionic liquid as a sacrificial reservoir in antimicrobial organosilicate nanocomposite coatings. <i>ACS Applied Materials & Description of State of</i>	9.5	36
183	Evaluating the solvation properties of functionalized ionic liquids with varied cation/anion composition using the solvation parameter model. <i>Journal of Chromatography A</i> , 2011 , 1218, 5311-8	4.5	36
182	Synthesis and luminescence study of Eu3+ in Zn2SiO4 nanocrystals. <i>Optical Materials</i> , 2004 , 27, 15-20	3.3	36
181	Effects of Processing Temperature on the Oxygen Quenching Behavior of Tris(4,7?-diphenyl-1,10?-phenanthroline) Ruthenium (II) Sequestered Within Sol-Gel-Derived Xerogel Films. <i>Journal of Sol-Gel Science and Technology</i> , 2000 , 17, 71-82	2.3	36
180	Rapid Microwave-Assisted Synthesis of Silver Nanoparticles in a Halide-Free Deep Eutectic Solvent. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5725-5731	8.3	35
179	Rotational and translational dynamics of rhodamine 6G in a pyrrolidinium ionic liquid: a combined time-resolved fluorescence anisotropy decay and NMR study. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 7883-90	3.4	35
178	Surface characterization of imidazolium-based ionic liquids with cyano-functionalized anions at the gas-liquid interface using sum frequency generation spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 5122-31	3.6	35
177	J-aggregation of ionic liquid solutions of meso-tetrakis(4-sulfonatophenyl)porphyrin. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1886-94	3.6	35

(2004-2008)

176	Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. <i>Analytical Chemistry</i> , 2008 , 80, 4551-74	7.8	35
175	Electrokinetic chromatographic characterization of novel pseudo-phases based on N-alkyl-N-methylpyrrolidinium ionic liquid type surfactants. <i>Electrophoresis</i> , 2006 , 27, 4141-8	3.6	35
174	N-Alkyl-N-methylpyrrolidinium salts as templates for hexagonally meso-ordered silicate thin films. <i>Chemical Communications</i> , 2005 , 939-41	5.8	35
173	Cold welding: a phenomenon for spontaneous self-healing and shape genesis at the nanoscale. <i>Materials Horizons</i> , 2015 , 2, 157-167	14.4	34
172	Infinite Dilution Activity Coefficients of Solutes Dissolved in Two Trihexyl(tetradecyl)phosphonium Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 1877-1885	2.8	34
171	Are ionic liquids suitable media for boron nitride exfoliation and dispersion? Insight via molecular dynamics. <i>RSC Advances</i> , 2013 , 3, 8197	3.7	34
170	Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters. <i>Nanoscale</i> , 2014 , 6, 9594-8	7.7	33
169	Cholesterol determination using protein-templated fluorescent gold nanocluster probes. <i>Analyst, The</i> , 2013 , 138, 7299-302	5	33
168	Fluorescence energy transfer efficiency in labeled yeast cytochrome c: a rapid screen for ion biocompatibility in aqueous ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 3642-4	3.6	33
167	Comment on "How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy". <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5822-3; discussion 5824	3.4	33
166	Room-Temperature Turkevich Method: Formation of Gold Nanoparticles at the Speed of Mixing Using Cyclic Oxocarbon Reducing Agents. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5105-5118	3.8	32
165	Ring-opened heterocycles: Promising ionic liquids for gas separation and capture. <i>Journal of Membrane Science</i> , 2012 , 401-402, 61-67	9.6	32
164	On the Microenvironments Surrounding Dansyl Sequestered within Class I and II Xerogels. <i>Chemistry of Materials</i> , 2000 , 12, 3547-3551	9.6	32
163	Toward Tailored Xerogel Composites: Local Dipolarity and Nanosecond Dynamics within Binary Composites Derived from Tetraethylorthosilane and ORMOSILs, Oligomers or Surfactants. <i>Journal of Sol-Gel Science and Technology</i> , 1999 , 15, 37-48	2.3	32
162	Physicochemical properties and activity coefficients at infinite dilution for organic solutes and water in a novel bicyclic guanidinium superbase-derived protic ionic liquid. <i>Journal of Chemical Thermodynamics</i> , 2013 , 58, 62-69	2.9	31
161	Microscopic diffusion dynamics of silver complex-based room-temperature ionic liquids probed by quasielastic neutron scattering. <i>ChemPhysChem</i> , 2011 , 12, 944-50	3.2	31
160	Optically responsive switchable ionic liquid for internally-referenced fluorescence monitoring and visual determination of carbon dioxide. <i>Chemical Communications</i> , 2012 , 48, 7043-5	5.8	30
159	Effects of Subzero Temperatures on Fluorescent Probes Sequestered within Aerosol-OT Reverse Micelles. <i>Langmuir</i> , 2004 , 20, 1551-1557	4	30

158	Study of benzyl- or cyclohexyl-functionalized ionic liquids using inverse gas chromatography. Journal of Molecular Liquids, 2017 , 242, 550-559	6	28
157	Microporosity, Optical Bandgap Sizes, and Photocatalytic Activity of M(I)-Nb(V) (M = Cu, Ag) Oxyfluoride Hybrids. <i>Crystal Growth and Design</i> , 2010 , 10, 1323-1331	3.5	28
156	A parallel multiharmonic frequency-domain fluorometer for measuring excited-state decay kinetics following one-, two-, or three-photon excitation. <i>Analytical Chemistry</i> , 1998 , 70, 3384-96	7.8	28
155	RAG1-DNA binding in V(D)J recombination. Specificity and DNA-induced conformational changes revealed by fluorescence and CD spectroscopy. <i>Journal of Biological Chemistry</i> , 2003 , 278, 5584-96	5.4	27
154	Cyclodextrin Inclusion Complexes with a Solvatochromic Fluorescent Probe. <i>Journal of Chemical Education</i> , 2002 , 79, 1261	2.4	27
153	Design rules of ionic liquids tasked for highly efficient fuel desulfurization by mild oxidative extraction. <i>Fuel</i> , 2017 , 189, 334-339	7.1	26
152	Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors. <i>Journal of Enzyme Inhibition and Medicinal Chemistry</i> , 2012 , 27, 715-21	5.6	26
151	Benzothiazines in organic synthesis. Synthesis of fluorescent 7-amino-2,1-benzothiazines. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 7979-82	3.9	26
150	The Photophysics of 6-(1-Pyrenyl)hexyl-11(1-pyrenyl)undecanoate Dissolved in Organic Liquids and Supercritical Carbon Dioxide: Impact on Olefin Metathesis. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 1820-1832	3.4	26
149	Static and time-resolved fluorescence of fluorescein-labeled dextran dissolved in aqueous solution or sequestered within a solgel-derived hydrogel. <i>Analyst, The</i> , 1999 , 124, 373-379	5	26
148	Kitchen-Inspired Nanochemistry: Dispersion, Exfoliation, and Hybridization of Functional MoS2 Nanosheets Using Culinary Hydrocolloids. <i>ChemNanoMat</i> , 2015 , 1, 167-177	3.5	25
147	Infinite Dilution Activity Coefficients and Gas-to-Liquid Partition Coefficients of Organic Solutes Dissolved in 1-Benzylpyridinium Bis(Trifluoromethylsulfonyl)Imide and 1-Cyclohexylmethyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)Imide. <i>Journal of Solution</i>	1.8	25
146	Sum frequency generation spectroscopy of imidazolium-based ionic liquids with cyano-functionalized anions at the solid salt-liquid interface. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 5939-49	3.4	25
145	Ethanol-assisted, few nanometer, water-in-ionic-liquid reverse micelle formation by a zwitterionic surfactant. <i>Chemistry - A European Journal</i> , 2012 , 18, 12213-7	4.8	25
144	Computational prediction of ionic liquid 1-octanol/water partition coefficients. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4339-42	3.6	25
143	Fluorescence quenching immunoassay performed in an ionic liquid. <i>Chemical Communications</i> , 2006 , 2851-3	5.8	25
142	O2Quenching of Ruthenium(II) Tris(2,2Ebypyridyl)2+within the Water Pool of Perfluoropolyether-Based Reverse Micelles Formed in Supercritical Carbon Dioxide. <i>Langmuir</i> , 2000 , 16, 5593-5599	4	25
141	Rotational Dynamics in Ionic Liquids from NMR Relaxation Experiments and Simulations: Benzene and 1-Ethyl-3-Methylimidazolium. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 9450-67	3.4	25

140	Correlation of the Solubilizing Abilities of 1-Butyl-1-methylpiperidinium Bis(trifluoromethylsulfonyl)imide and 1-Butyl-1-methylpyrrolidinium Tetracyanoborate. <i>Journal of Solution Chemistry</i> , 2012 , 41, 1165-1184	1.8	24	
139	Ionically Self-Assembled, Multi-Luminophore One-Dimensional Micro- and Nanoscale Aggregates of Thiacarbocyanine GUMBOS. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8251-8260	3.8	24	
138	Correlation of the Solubilizing Abilities of Hexyl(trimethyl)ammonium bis((Trifluoromethyl)sulfonyl)imide, 1-Propyl-1-methylpiperidinium bis((Trifluoromethyl)sulfonyl)imide, and 1-Butyl-1-methyl-pyrrolidinium Thiocyanate. <i>Journal of</i>	1.8	24	
137	Solution Chemistry, 2011 , 40, 2000-2022 Tailoring the photoluminescence properties of transition metal phosphonates. <i>Dalton Transactions</i> , 2010 , 39, 6024-30	4.3	24	
136	Effects of Added CO2 on the Conformation of Pyrene End-Labeled Poly(dimethylsiloxane) Dissolved in Liquid Toluene. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 8585-8591	3.4	24	
135	Bacterial Cellulose Ionogels as Chemosensory Supports. <i>ACS Applied Materials & Description</i> (1997) 100 Bacterial Cellulose Ionogels as Chemosensory Supports. <i>ACS Applied Materials & Description</i> (1997) 100 Bacterial Cellulose Ionogels as Chemosensory Supports. <i>ACS Applied Materials & Description</i> (1997) 100 Bacterial Cellulose Ionogels as Chemosensory Supports. <i>ACS Applied Materials & Description</i> (1997) 100 Bacterial Cellulose Ionogels as Chemosensory Supports. <i>ACS Applied Materials & Description</i> (1997) 100 Bacterial Cellulose Ionogels as Chemosensory Supports. <i>ACS Applied Materials & Description</i> (1997) 100 Bacterial Cellulose Ionogels (1997) 100 Bacterial Cellulose Io	9.5	23	
134	Nanosilica-supported polyethoxyamines as low-cost, reversible carbon dioxide sorbents. <i>Journal of Colloid and Interface Science</i> , 2012 , 385, 154-9	9.3	23	
133	Growth of Gold Nanosheets and Nanopolyhedra in Pyrrolidinium-Based Ionic Liquids: Investigation of the Cation Effect on the Resulting Morphologies. <i>Crystal Growth and Design</i> , 2010 , 10, 1319-1322	3.5	23	
132	Behavior of Acrylodan-Labeled Human Serum Albumin Dissolved in Ionic Liquids. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 560-569	3.9	23	
131	Comparison of dansylated aminopropyl controlled pore glass solvated by molecular and ionic liquids. <i>Langmuir</i> , 2007 , 23, 843-9	4	23	
130	A comparison of electrospray versus nanoelectrospray ionization Fourier transform mass spectrometry for the analysis of synthetic poly(dimethylsiloxane)/poly(ethylene glycol) oligomer blends. <i>International Journal of Mass Spectrometry</i> , 2000 , 202, 241-250	1.9	23	
129	Infinite dilution activity coefficients of solutes dissolved in anhydrous alkyl(dimethyl)isopropylammonium bis(trifluoromethylsulfonyl)imide ionic liquids containing functionalized- and nonfunctionalized-alkyl chains. <i>Journal of Molecular Liquids</i> , 2016 , 222, 295-312	6	23	
128	Computational perspectives on structure, dynamics, gas sorption, and bio-interactions in deep eutectic solvents. <i>Fluid Phase Equilibria</i> , 2017 , 448, 50-58	2.5	22	
127	Behavior of Pyrene End-Labeled Poly(dimethylsiloxane) Polymer Tails in Mixtures of 1-Butyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide and Toluene. <i>Macromolecules</i> , 2005 , 38, 8574-8582	5.5	22	
126	The influence of phenylethynyl linkers on the photo-physical properties of metal-free porphyrins. <i>Journal of Porphyrins and Phthalocyanines</i> , 2000 , 04, 669-683	1.8	22	
125	Vapor Pressure Mapping of Ionic Liquids and Low-Volatility Fluids Using Graded Isothermal Thermogravimetric Analysis. <i>ChemEngineering</i> , 2019 , 3, 42	2.6	21	
124	Sunlight-assisted route to antimicrobial plasmonic aminoclay catalysts. <i>Nanoscale</i> , 2015 , 7, 86-91	7.7	21	
123	Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-sec-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and in 1-tert-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. <i>Physics and Chemistry of Liquids</i>	1.5	21	

122	Influence of solute charge and pyrrolidinium ionic liquid alkyl chain length on probe rotational reorientation dynamics. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 1088-96	3.4	21
121	Ionic galleries: a bilayered host-guest cocrystal of C-propyl pyrogallol[4]arene with an ionic liquid. <i>Chemical Communications</i> , 2012 , 48, 5262-4	5.8	21
120	Thermodynamic considerations for solubility and conformational transitions of poly-N-isopropyl-acrylamide. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 12667-73	3.6	21
119	Electrospray ionization Fourier transform mass spectrometry of polycyclic aromatic hydrocarbons using silver(I)-mediated ionization. <i>Canadian Journal of Chemistry</i> , 2005 , 83, 1871-1877	0.9	21
118	Self-assembly of metal oxide nanoparticles into hierarchically patterned porous architectures using ionic liquid/oil emulsions. <i>Langmuir</i> , 2009 , 25, 7229-33	4	20
117	The interfacial dynamics of water sandwiched between graphene sheets are governed by the slit width. <i>Surface Science</i> , 2013 , 609, 129-139	1.8	19
116	The study and application of biomolecules in deep eutectic solvents. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 536-566	7.3	19
115	On the Origin of the Heterogeneous Emission from Pyrene Sequestered Within Tetramethylorthosilicate-Based Xerogels: A Decay-Associated Spectra and O2 Quenching Study. Journal of Sol-Gel Science and Technology, 2000 , 17, 83-90	2.3	18
114	Glycol-functionalized ionic liquids for high-temperature enzymatic ring-opening polymerization <i>RSC Advances</i> , 2018 , 8, 36025-36033	3.7	18
113	Ionic conductivity enhancement of sputtered gold nanoparticle-in-ionic liquid electrolytes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 792-803	13	17
112	Formation of a dimeric host-guest complex via binding between a dicationic ionic liquid and a pyrogallol[4]arene macrocycle. <i>Chemical Communications</i> , 2013 , 49, 1802-4	5.8	17
111	Ionic liquids containing fluorinated	3.6	17
110	Contrasting behavior of classical salts versus ionic liquids toward aqueous phase J-aggregate dissociation of a cyanine dye. <i>Langmuir</i> , 2011 , 27, 12884-90	4	17
109	Dye Redissolution after Precipitation with a Water-miscible Ionic Liquid. <i>Chemistry Letters</i> , 2008 , 37, 26	60 <u>127</u> 61	17
108	Effects of Density on the Intramolecular Hydrogen Bonding, Taillail Cyclization, and Mean-Free Tail-to-Tail Distances of Pyrene End-Labeled Poly(dimethylsiloxane) Oligomers Dissolved in Supercritical CO2. <i>Macromolecules</i> , 2001 , 34, 6831-6838	5.5	17
107	Incorporation of antibacterial agent derived deep eutectic solvent into an active dental composite. <i>Dental Materials</i> , 2017 , 33, 1445-1455	5.7	16
106	PEGylation of a maltose biosensor promotes enhanced signal response when immobilized in a silica sol-gel. <i>Bioconjugate Chemistry</i> , 2009 , 20, 2381-4	6.3	16
105	External ion accumulation of low molecular weight poly(ethylene glycol) by electrospray ionization fourier transform mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1999 , 10, 1298-1304	3.5	16

Extraction of Water and Speciation of Trivalent Lanthanides and Americium in Organophosphorus Extractants. <i>Inorganic Chemistry</i> , 2016 , 55, 12675-12685	16
Illuminating hostīguest cocrystallization between pyrogallol[4]arenes and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. <i>CrystEngComm</i> , 2014 , 16, 6010-6022	15
Rotational and Translational Dynamics of N-Butyl-N-methylpiperidinium Trifluoromethanesulfonimide Ionic Liquids Studied by NMR and MD Simulations. <i>Journal of Physical</i> 3.8 Chemistry C, 2012 , 116, 20779-20786	15
Quantifying Critical Micelle Concentration and Nonidealities within Binary Mixed Micellar Systems: An Upper-Level Undergraduate Laboratory. <i>The Chemical Educator</i> , 2001 , 6, 223-226	15
Probing the Origins of Spectroscopic Responses to Analyte-Induced Conformational Changes in Fluorescently-Labeled Cod III Parvalbumin. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10100-10110	15
Characterization of the solubilizing ability of tetraalkylammonium ionic liquids containing a pendant alkyl chain bearing a basic N,N-dimethylamino or N,N-dimethylaminoethoxy functionality. 6 Journal of Molecular Liquids, 2019 , 283, 380-390	14
Spatially Resolved Derivatization of Solid-Phase-Synthesis Beads with Fluorescent Dendrimers: Creation of Localized Microdomains. <i>Helvetica Chimica Acta</i> , 2002 , 85, 3532-3558	14
Efficient White-Light Generation from Ionically Self-Assembled Triply-Fluorescent Organic Nanoparticles. <i>Chemistry - A European Journal</i> , 2016 , 22, 8855-63	14
Domestic pressure cooker as inexpensive hydrothermal vessel: Demonstrated utility for eco-friendly synthesis of non-toxic carbon dots. <i>Nano Structures Nano Objects</i> , 2016 , 6, 52-58	14
Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis 1. <i>Applied Spectroscopy Reviews</i> , 2020 , 55, 647-723	14
Argentous Deep Eutectic Solvent Approach for Scaling Up the Production of Colloidal Silver Nanocrystals. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 11036-11043	13
Strategies for controlled synthesis of nanoparticles derived from a group of uniform materials based on organic salts. <i>Journal of Colloid and Interface Science</i> , 2015 , 446, 163-9	13
Antiferromagnetic order in MnO spherical nanoparticles. <i>Physical Review B</i> , 2011 , 83, 3.3	13
Seeded growth of robust SERS-active 2D Au@Ag nanoparticulate films. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1079	13
Assessment of One- and Two-Photon Excited Luminescence for Directly Measuring O2, pH, Na+, Mg2+, or Ca2+ in Optically Dense and Biologically Relevant Samples. <i>Applied Spectroscopy</i> , 2002 , 56, 455 ³ 465	3 13
Polyol Synthesis of Magnetite Nanocrystals in a Thermostable Ionic Liquid. <i>Crystal Growth and Design</i> , 2017 , 17, 1558-1567	12
Exploiting the Inherent Photophysical Properties of the Major Tirapazamine Metabolite in the Development of Profluorescent Substrates for Enzymes That Catalyze the Bioreductive Activation of Hypoxia-Selective Anticancer Prodrugs. <i>Journal of Organic Chemistry</i> , 2018 , 83, 3126-3131	12
Soft- and hard-templated organic salt nanoparticles with the Midas touch: gold-shelled nanoGUMBOS. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8996-9003	12
	Extractants. Inorganic Chemistry, 2016, 55, 12675-12685 Illuminating hostBuest cocrystallization between pyrogallol[4] arenes and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. CrystEngComm, 2014, 16, 6010-6022 Rotational and Translational Dynamics of N-Butyl-N-methylipiperidinium Trifluoromethanesulfonimide ionic Liquids Studied by NMR and MD Simulations. Journal of Physical Chemistry C, 2012, 116, 20779-20786 Quantifying Critical Micelle Concentration and Nonidealities within Binary Mixed Micellar Systems: An Upper-Level Undergraduate Laboratory. The Chemical Educator, 2001, 6, 223-226 Probing the Origins of Spectroscopic Responses to Analyte-Induced Conformational Changes in Fluorescently-Labeled Cod III Parvalbumin. Journal of Physical Chemistry B, 2000, 104, 10100-10110 Characterization of the solubilizing ability of tetraalkylammonium ionic liquids containing a pendant alkyl chain bearing a basic NN-dimethylamino or NN-dimethylaminoethoxy functionality. Journal of Molecular Liquids, 2019, 283, 3803-390 Spatially Resolved Derivatization of Solid-Phase-Synthesis Beads with Fluorescent Dendrimers: Creation of Localized Microdomains. Helvetica Chimica Acta, 2002, 85, 3532-3558 Efficient White-Light Ceneration from Ionically Self-Assembled Triply-Fluorescent Organic Nanoparticles. Chemistry - A European Journal, 2016, 22, 8855-63 Domestic pressure cooker as inexpensive hydrothermal vessel: Demonstrated utility for eco-friendly synthesis of non-toxic carbon dots. Nano Structures Nano Objects, 2016, 6, 52-58 Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis. Acplied Spectroscopy Reviews, 2020, 55, 647-723 Argentous Deep Eutectic Solvent Approach for Scaling Up the Production of Colloidal Silver Nanocrystals. ACS Sustainable Chemistry and Engineering, 2019, 7, 11036-11043 Strategies for controlled synthesis of nanoparticles derived from a group of uniform materials based on organic salts. Journal of Colloid and Interface Science, 2015, 4

86	Amphiphilic Self Organization in Ionic Liquids. ACS Symposium Series, 2005, 234-243	0.4	12
85	On the non-innocence of the imidazolium cation in a rapid microwave synthesis of oleylamine-capped gold nanoparticles in an ionic liquid. <i>Chemical Communications</i> , 2018 , 54, 7523-7526	5.8	12
84	An Indium-Seamed Hexameric Metal-Organic Cage as an Example of a Hexameric Pyrogallol[4]arene Capsule Conjoined Exclusively by Trivalent Metal Ions. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8062-8065	16.4	12
83	A switchable peroxidase mimic derived from the reversible co-assembly of cytochrome c and carbon dots. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2163-2170	7.3	12
82	Calorimetric Evaluation of the Operational Thermal Stability of Ribonuclease A in Hydrated Deep Eutectic Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 12682-12687	8.3	11
81	Developing microwave-assisted ionic liquid microextraction for the detection and tracking of hydrophobic pesticides in complex environmental matrices. <i>RSC Advances</i> , 2013 , 3, 17113	3.7	11
80	Ionic liquid adsorbate enhanced electrogenerated chemiluminescence of ruthenium, osmium, and iridium complexes in water. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 656, 34-40	4.1	11
79	Tandem copper and gold nanoclusters for two-color ratiometric explosives detection. <i>Analyst, The</i> , 2018 , 143, 1036-1041	5	10
78	A ML metal-organic nanocapsule with open windows using mixed macrocycles. <i>Chemical Communications</i> , 2018 , 54, 635-637	5.8	10
77	Solvent-Modulated Formation of P ac-manland Capsular Host G uest Bilayers from a Dicationic Ionic Liquid and C-Butylpyrogallol[4]arene. <i>Crystal Growth and Design</i> , 2014 , 14, 4199-4204	3.5	10
76	Ionic Liquid Conditioning of Poly(vinylferrocene) for the Doping/Undoping of Glycylglycylglycine Tripeptide. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13709-13715	3.8	10
75	HPLC Analysis of ⊞and ∰Acids in Hops. <i>Journal of Chemical Education</i> , 2008 , 85, 954	2.4	10
74	Effects of fluorescent probe structure on the dynamics at cysteine-34 within bovine serum albumin: evidence for probe-dependent modulation of the cybotactic region. <i>Biopolymers</i> , 2001 , 59, 502-11	2.2	10
73	Three-Arm Poly(dimethylsiloxane) Junction Bearing a Single Pendant Dansyl Group: A Model Architecture for Polymer Junction Points Dissolved in Liquids and Molten Polymers. <i>Macromolecules</i> , 2001 , 34, 4624-4629	5.5	10
72	Combined Small-Angle Neutron Scattering, Diffusion NMR, and Molecular Dynamics Study of a Eutectogel: Illuminating the Dynamical Behavior of Glyceline Confined in Bacterial Cellulose Gels. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 7647-7658	3.4	10
71	Ranking solvent interactions and dielectric constants with [Pt(mesBIAN)(tda)]: A cautionary tale for polarity determinations in ionic liquids. <i>ChemPhysChem</i> , 2013 , 14, 1025-30	3.2	9
70	Formation of an unusual charge-transfer network from an ionic liquid. <i>Chemical Communications</i> , 2006 , 272-4	5.8	9
69	Best practices for reporting nanocatalytic performance: lessons learned from nitroarene reduction as a model reaction. <i>New Journal of Chemistry</i> , 2019 , 43, 17932-17936	3.6	9

(2018-2019)

68	Borohydride stabilized goldBilver bimetallic nanocatalysts for highly efficient 4-nitrophenol reduction. <i>Nanoscale Advances</i> , 2019 , 1, 4665-4668	5.1	9
67	Ionic Liquid Anion Controlled Nanoscale Gold Morphology Grown at a Liquid Interface. <i>Langmuir</i> , 2017 , 33, 6029-6037	4	8
66	Synthesis, spectroscopy, electrochemistry, and coordination chemistry of substituted phosphine sulfides and selenides. <i>Polyhedron</i> , 2015 , 100, 333-343	2.7	8
65	QCM Sensor Arrays, Electroanalytical Techniques and NIR Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs. <i>Sensors</i> , 2020 , 20,	3.8	8
64	Synthesis and fluorescence spectroscopy of tris(pyrenyl)pnictogen compounds. <i>Dalton Transactions</i> , 2017 , 46, 10867-10875	4.3	8
63	Confeito-like assembly of organosilicate-caged fluorophores: ultrabright suprananoparticles for fluorescence imaging. <i>Nanotechnology</i> , 2012 , 23, 175601	3.4	8
62	Interaction of influenza virus fusion peptide with lipid membranes: effect of lysolipid. <i>Journal of Membrane Biology</i> , 2006 , 211, 191-200	2.3	8
61	An Ionic Liquid-Based Optical Thermometer. ACS Symposium Series, 2005, 171-181	0.4	8
60	Polyhedral borane-capped coinage metal nanoparticles as high-performing catalysts for 4-nitrophenol reduction. <i>Chemical Communications</i> , 2019 , 55, 7990-7993	5.8	7
59	Monte Carlo predictions of phase equilibria and structure for dimethyl ether + sulfur dioxide and dimethyl ether + carbon dioxide. <i>Journal of Chemical Physics</i> , 2012 , 136, 044514	3.9	7
58	Self-probing of micellization within phenyl-containing surfactant solutions. <i>ChemPhysChem</i> , 2010 , 11, 2510-3	3.2	7
57	A General, Modular Approach to a New Family of Amine-Substituted Arylboronic Acid Saccharide Chemosensors. <i>Australian Journal of Chemistry</i> , 2006 , 59, 633	1.2	7
56	Generation and pH dependent superquenching of poly(amido) carboxylate dendrons hosting a single "focal point" pyrene. <i>Chemical Communications</i> , 2004 , 1318-9	5.8	7
55	Effects of ethanol volume percent on fluorescein-labeled spinach apo- and holocalmodulin. <i>Analytical Chemistry</i> , 2000 , 72, 227-33	7.8	7
54	Batch and Flow Nanomanufacturing of Large Quantities of Colloidal Silver and Gold Nanocrystals Using Deep Eutectic Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14679-14689	8.3	7
53	Characterization of the solubilizing ability of short-chained glycol-grafted ammonium and phosphonium ionic liquids. <i>Journal of Molecular Liquids</i> , 2020 , 304, 112786	6	6
52	Single Laboratory Experiment Integrating the Synthesis, Optical Characterization, and Nanocatalytic Assessment of Gold Nanoparticles. <i>Journal of Chemical Education</i> , 2020 , 97, 1454-1459	2.4	6
51	Ionic liquid inspired alkalinochromic salts based on Reichardt's dyes for the solution phase and vapochromic detection of amines. <i>Analytical and Bioanalytical Chemistry</i> , 2018 , 410, 4607-4613	4.4	6

50	Characterization of a Novel Ionic Liquid Monopropellant for Multi-Mode Propulsion 2017,		6
49	Sub-minute formation of supported nanoporous mesoscale patterns programmed by surface energy. <i>Journal of Colloid and Interface Science</i> , 2011 , 364, 546-54	9.3	6
48	Tracking Nanosecond and Subnanosecond Protein Dynamics On-the-Fly Using Frequency-Domain Fluorescence. <i>Applied Spectroscopy</i> , 1998 , 52, 933-942	3.1	6
47	Evidence of a liquid-liquid transition in a glass-forming ionic liquid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
46	NMR relaxometric probing of ionic liquid dynamics and diffusion under mesoscopic confinement within bacterial cellulose ionogels. <i>Journal of Chemical Physics</i> , 2018 , 148, 193845	3.9	6
45	Laser-induced sound pinging (LISP): A rapid photoacoustic method to determine the speed of sound in microliter fluid volumes. <i>Sensors and Actuators B: Chemical</i> , 2019 , 291, 401-410	8.5	5
44	Ionothermal synthesis of magnetically-retrievable mesoporous carbons from alkyne-appended ionic liquids and demonstration of their use in selective dye removal. <i>New Journal of Chemistry</i> , 2018 , 42, 1979-1986	3.6	5
43	Binding of the ionic liquid cation 1-alkyl-3-methylimidazolium to p-tetranitrocalix[4]arene probed by fluorescent indicator displacement. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 403, 2361-6	4.4	5
42	Noninvasive probing of aqueous Triton X-100 with steady-state and frequency-domain fluorometry. <i>Chemical Physics Letters</i> , 2007 , 450, 156-163	2.5	5
41	Fluorescence Polarization as a Tool to Pinpoint Vesicle Thermal Phase Transitions. <i>Journal of Chemical Education</i> , 2001 , 78, 1100	2.4	5
40	Development of Abraham model correlations for short-chain glycol-grafted imidazolium and pyridinium ionic liquids from inverse gas-chromatographic measurements. <i>Journal of Molecular Liquids</i> , 2020 , 317, 113983	6	5
39	Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles. <i>Nanoscale Advances</i> , 2021 , 3, 3980-4004	5.1	5
38	Ionic Liquids Can Permanently Modify Porous Silicon Surface Chemistry. <i>Chemistry - A European Journal</i> , 2016 , 22, 11677-84	4.8	4
37	Characterization of Morphology and Active Agent Mobility within Hybrid Silica Sol G el Composites. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13972-13979	3.8	4
36	Sweet Biofriendly Silicates. Australian Journal of Chemistry, 2005, 58, 721	1.2	4
35	Evaluation of canonical choline chloride based deep eutectic solvents as dye-sensitized solar cell electrolytes. <i>Journal of Chemical Physics</i> , 2021 , 155, 061102	3.9	4
34	Multi-Purpose Cellulosic Ionogels. ACS Symposium Series, 2017 , 143-155	0.4	3
33	Formation of Water Channels in the Crystalline Hydrates of Macrocyclic Compounds. <i>Chemistry - A European Journal</i> , 2018 , 24, 3299-3304	4.8	3

32	Structure and spectroscopy of uranyl and thorium complexes with substituted phosphine oxide ligands. <i>Radiochimica Acta</i> , 2015 , 103, 49-56	1.9	3
31	Investigation of the hygroscopic growth of self-assembled layers of N-alkyl-N-methylpyrrolidinium bromides at the interface between air and organic salt. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 318, 254-258	5.1	3
30	Post-gel permeation chromatography polymer blend analysis from a raster-deposited matrix-assisted laser desorption/ionization target. <i>Rapid Communications in Mass Spectrometry</i> , 2003 , 17, 2450-4	2.2	3
29	Solvation Dynamics in Ionic Liquids, Results from ps and fs Emission Spectroscopy 2006 , 225-234		3
28	Effect of ionic liquid on the fluorescence of an intramolecular exciplex forming probe. <i>Photochemical and Photobiological Sciences</i> , 2020 , 19, 251-260	4.2	3
27	An Indium-Seamed Hexameric Metal D rganic Cage as an Example of a Hexameric Pyrogallol[4]arene Capsule Conjoined Exclusively by Trivalent Metal Ions. <i>Angewandte Chemie</i> , 2020 , 132, 8139-8142	3.6	3
26	Raman spectroscopy and multivariate regression analysis in biomedical research, medical diagnosis, and clinical analysis. <i>Applied Spectroscopy Reviews</i> ,1-58	4.5	3
25	Polyionic Nanoclays: Tailorable Hybrid OrganicIhorganic Catalytic Platforms. <i>Chemistry of Materials</i> , 2021 , 33, 3585-3592	9.6	3
24	Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules. <i>Accounts of Chemical Research</i> , 2021 , 54, 3191-3203	24.3	3
23	Hierarchical Coordination Frameworks Based on Metal Drganic Dimeric Nanocapsules Comprising Praseodymium and Pyrogallol[4] arene. <i>Crystal Growth and Design</i> , 2021 , 21, 1891-1897	3.5	3
22	Functionalized ionic liquids for lignite dissolution and treatment. <i>Journal of Chemical Technology and Biotechnology</i> ,	3.5	3
21	Spectrophotometric analysis at the single-cell level: elucidating dispersity within melanic immortalized cell populations. <i>Analyst, The</i> , 2017 , 142, 1482-1491	5	2
20	Facile, one-pot, in aqua synthesis of catalytically competent gold nanoparticles using pyrogallol[4]arene as the sole reagent. <i>Chemical Communications</i> , 2019 , 55, 6261-6264	5.8	2
19	Characterization of a New Electron Donor-Acceptor Dyad in Conventional Solvents and Ionic Liquids. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 9395-9407	3.4	2
18	Solution aggregation of anti-trypanosomal N-(2-naphthylmethyl)ated polyamines. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 162, 387-398	4.7	2
17	On the Weak Intrinsic Luminescence from Paclitaxel Dissolved in Nonelectrolyte Solvents. <i>Applied Spectroscopy</i> , 1999 , 53, 991-999	3.1	2
16	Ionic Liquid-Controlled Shape Transformation of Spherical to Nonspherical Polymersomes via Hierarchical Self-Assembly of a Diblock Copolymer. <i>Langmuir</i> , 2021 , 37, 5081-5088	4	2
15	Fixed-Path Length Laser-Induced Sound Pinging: A Streamlined Method for Sound Speed Determination in Arbitrary Liquids. <i>Journal of Chemical & Designation of Chemical & Designation Designation (Chemical & Designation)</i>	2.8	2

14	Enzyme activation by water-mimicking dual-functionalized ionic liquids. <i>Molecular Catalysis</i> , 2021 , 515, 111882	3.3	2
13	Plasmonic Evolution and Arrested Development for Silver Nanoscale Colloids: A Classroom Demonstration. <i>Journal of Chemical Education</i> , 2019 , 96, 2560-2564	2.4	1
12	Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode. <i>Analytica Chimica Acta</i> , 2015 , 884, 77-82	6.6	1
11	Controlling Microarray Feature Spreading and Response Stability on Porous Silicon Platforms by Using Alkene-Terminal Ionic Liquids and UV Hydrosilylation. <i>Langmuir</i> , 2020 , 36, 5474-5482	4	1
10	Carbon dioxide emulsion assisted loading of polymer microspheres toward sustained release materials. <i>Langmuir</i> , 2005 , 21, 3730-2	4	1
9	Fluorescence Lifetime Measurements, Applications of 2006 ,		1
8	Aspects of Chemical Recognition and Biosolvation within Room Temperature Ionic Liquids. <i>ACS Symposium Series</i> , 2003 , 212-224	0.4	1
7	Deep eutectic solvents comprising creatine and citric acid and their hydrated mixtures <i>Chemical Communications</i> , 2022 ,	5.8	1
6	Assessing rotation and solvation dynamics in ethaline deep eutectic solvent and its solutions with methanol. <i>Journal of Chemical Physics</i> , 2021 , 155, 034505	3.9	1
5	Flexible Alkyl Tails Help Shape Matching and Close Packing in Self-Assembly of Supramolecular Structure. <i>Crystal Growth and Design</i> , 2021 , 21, 40-44	3.5	1
4	Cocrystallization of C-Propyl Pyrogallol[4]arene and the Pharmaceutical Gabapentin. <i>Journal of Chemical Crystallography</i> , 2019 , 49, 119-124	0.5	
3	On the behavior of indole-containing species sequestered within reverse micelles at sub-zero temperatures. <i>Applied Spectroscopy</i> , 2007 , 61, 537-47	3.1	
2	Laser-induced sound pinging for the rapid determination of total sugar or sweetener content in commercial beverages <i>Talanta</i> , 2021 , 240, 123034	6.2	
1	Cesium CationInteractions Stabilize Pyrogallol[4]arene Coordination Networks. <i>Crystal Growth and Design</i> ,	3.5	