Nikita Gamper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385722/publications.pdf

Version: 2024-02-01

57631 74018 5,952 99 44 75 citations h-index g-index papers 130 130 130 5697 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl– channels. Journal of Clinical Investigation, 2010, 120, 1240-1252.	3.9	264
2	Regulation of Kv7 (KCNQ) K+ Channel Open Probability by Phosphatidylinositol 4,5-Bisphosphate. Journal of Neuroscience, 2005, 25, 9825-9835.	1.7	246
3	Cell Volume in the Regulation of Cell Proliferation and Apoptotic Cell Death. Cellular Physiology and Biochemistry, 2000, 10, 417-428.	1.1	222
4	Regulation of ion transport proteins by membrane phosphoinositides. Nature Reviews Neuroscience, 2007, 8, 921-934.	4.9	220
5	Calmodulin Mediates Ca2+-dependent Modulation of M-type K+ Channels. Journal of General Physiology, 2003, 122, 17-31.	0.9	212
6	Phosphotidylinositol 4,5-Bisphosphate Signals Underlie Receptor-Specific ${\rm Gq/11}$ -Mediated Modulation of N-Type Ca2+ Channels. Journal of Neuroscience, 2004, 24, 10980-10992.	1.7	205
7	Activation of the Cl $\langle sup \rangle \hat{a}^{\circ} \langle sup \rangle$ Channel ANO1 by Localized Calcium Signals in Nociceptive Sensory Neurons Requires Coupling with the IP $\langle sub \rangle 3 \langle sub \rangle$ Receptor. Science Signaling, 2013, 6, ra73.	1.6	168
8	Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflugers Archiv European Journal of Physiology, 2001, 441, 551-558.	1.3	152
9	Bradykinin-Induced Functional Competence and Trafficking of the Â-Opioid Receptor in Trigeminal Nociceptors. Journal of Neuroscience, 2005, 25, 8825-8832.	1.7	148
10	Plasmodium falciparum activates endogenous Cl- channels of human erythrocytes by membrane oxidation. EMBO Journal, 2002, 21, 22-30.	3.5	144
11	The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11393-11398.	3.3	142
12	Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain, 2011, 152, 742-754.	2.0	130
13	Cannabinoid WIN 55,212-2 Regulates TRPV1 Phosphorylation in Sensory Neurons. Journal of Biological Chemistry, 2006, 281, 32879-32890.	1.6	127
14	Structural Requirements for Differential Sensitivity of KCNQ K+ Channels to Modulation by Ca2+/Calmodulin. Molecular Biology of the Cell, 2005, 16, 3538-3551.	0.9	124
15	Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. Journal of Clinical Investigation, 2017, 127, 1741-1756.	3.9	119
16	IGF-1 up-regulates K+ channels via PI3-kinase, PDK1 and SGK1. Pflugers Archiv European Journal of Physiology, 2002, 443, 625-634.	1.3	118
17	Oxidative modification of M-type K+ channels as a mechanism of cytoprotective neuronal silencing. EMBO Journal, 2006, 25, 4996-5004.	3.5	115
18	Inhibition of M Current in Sensory Neurons by Exogenous Proteases: A Signaling Pathway Mediating Inflammatory Nociception. Journal of Neuroscience, 2008, 28, 11240-11249.	1.7	112

#	Article	IF	CITATIONS
19	Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission. Pain, 2014, 155, 2306-2322.	2.0	108
20	Target-specific PIP2signalling: how might it work?. Journal of Physiology, 2007, 582, 967-975.	1.3	104
21	Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflugers Archiv European Journal of Physiology, 2010, 459, 657-669.	1.3	104
22	Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential. Current Neuropharmacology, 2013, 11, 621-640.	1.4	103
23	The use of Chinese hamster ovary (CHO) cells in the study of ion channels. Journal of Pharmacological and Toxicological Methods, 2005, 51, 177-185.	0.3	102
24	Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochemical and Biophysical Research Communications, 2003, 305, 890-897.	1.0	101
25	Subunit-Specific Modulation of KCNQ Potassium Channels by Src Tyrosine Kinase. Journal of Neuroscience, 2003, 23, 84-95.	1.7	101
26	Robotic multiwell planar patch-clamp for native and primary mammalian cells. Nature Protocols, 2009, 4, 244-255.	5.5	95
27	Transcriptional Control of <i>KCNQ </i> Channel Genes and the Regulation of Neuronal Excitability. Journal of Neuroscience, 2010, 30, 13235-13245.	1.7	93
28	Phosphoinositide Lipid Second Messengers: New Paradigms for Calcium Channel Modulation. Neuron, 2005, 47, 179-182.	3.8	91
29	Direct Activation of the Epithelial Na+ Channel by Phosphatidylinositol 3,4,5-Trisphosphate and Phosphatidylinositol 3,4-Bisphosphate Produced by Phosphoinositide 3-OH Kinase. Journal of Biological Chemistry, 2004, 279, 22654-22663.	1.6	90
30	Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1578-86.	3.3	83
31	Single-Channel Analysis of KCNQ K+ Channels Reveals the Mechanism of Augmentation by a Cysteine-Modifying Reagent. Journal of Neuroscience, 2004, 24, 5079-5090.	1.7	81
32	Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+channels. Journal of Physiology, 2006, 575, 49-67.	1.3	78
33	Characterization of the effects of Clâ° channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Clâ° channels. Pflugers Archiv European Journal of Physiology, 2015, 467, 1417-1430.	1.3	78
34	Rapid Translocation and Insertion of the Epithelial Na+ Channel in Response to RhoA Signaling. Journal of Biological Chemistry, 2006, 281, 26520-26527.	1.6	71
35	K + channel activation by all three isoforms of serum- and glucocorticoid-dependent protein kinase SGK. Pflugers Archiv European Journal of Physiology, 2002, 445, 60-66.	1.3	69
36	Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study. Journal of Neurophysiology, 2015, 114, 3140-3153.	0.9	68

#	Article	IF	Citations
37	The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. Biochemical and Biophysical Research Communications, 2011, 410, 170-176.	1.0	61
38	Activation of Ca ²⁺ â€activated Cl ^{â°'} channel ANO1 by localized Ca ²⁺ signals. Journal of Physiology, 2016, 594, 19-30.	1.3	59
39	Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. British Journal of Pharmacology, 2015, 172, 1546-1556.	2.7	58
40	Redox and Nitric Oxide-Mediated Regulation of Sensory Neuron Ion Channel Function. Antioxidants and Redox Signaling, 2015, 22, 486-504.	2.5	58
41	TRPA1–FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nature Communications, 2017, 8, 947.	5.8	56
42	M channel enhancers and physiological M channel block. Journal of Physiology, 2012, 590, 793-807.	1.3	54
43	Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats. Experimental Neurology, 2017, 292, 135-144.	2.0	54
44	Mâ€type K ⁺ channels in peripheral nociceptive pathways. British Journal of Pharmacology, 2018, 175, 2158-2172.	2.7	53
45	Properties and Therapeutic Potential of Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on TRPC5, TRPM2 and TRPA1. Current Drug Targets, 2011, 12, 724-736.	1.0	47
46	Triple Cysteine Module within M-Type K ⁺ Channels Mediates Reciprocal Channel Modulation by Nitric Oxide and Reactive Oxygen Species. Journal of Neuroscience, 2013, 33, 6041-6046.	1.7	44
47	Dual Phosphorylations Underlie Modulation of Unitary KCNQ K+ Channels by Src Tyrosine Kinase. Journal of Biological Chemistry, 2004, 279, 45399-45407.	1.6	42
48	The heterodimeric amino acid transporter 4F2hc/LAT1 is associated in Xenopus oocytes with a nonâ€selective cation channel that is regulated by the serine/threonine kinase sgk‶. Journal of Physiology, 2000, 526, 35-46.	1.3	41
49	Hydrogen sulfide inhibits Cav3.2 Tâ€ŧype Ca 2+ channels. FASEB Journal, 2014, 28, 5376-5387.	0.2	41
50	A homozygous STIM1 mutation impairs store-operated calcium entry and natural killer cell effector function without clinical immunodeficiency. Journal of Allergy and Clinical Immunology, 2016, 137, 955-957.e8.	1.5	38
51	Cell volume-sensitive sodium channels upregulated by glucocorticoids in U937 macrophages. Pflugers Archiv European Journal of Physiology, 2000, 441, 281-286.	1.3	34
52	Bradykinin Controls Pool Size of Sensory Neurons Expressing Functional Â-Opioid Receptors. Journal of Neuroscience, 2013, 33, 10762-10771.	1.7	34
53	Phosphoinositide Sensitivity of Ion Channels, a Functional Perspective. Sub-Cellular Biochemistry, 2012, 59, 289-333.	1.0	33
54	Carbon monoxide inhibition of Cav3.2 Tâ€type Ca 2+ channels reveals tonic modulation by thioredoxin. FASEB Journal, 2013, 27, 3395-3407.	0.2	33

#	Article	IF	CITATIONS
55	Selective targeting of Mâ€type potassium K _v 7.4 channels demonstrates their key role in the regulation of dopaminergic neuronal excitability and depressionâ€like behaviour. British Journal of Pharmacology, 2017, 174, 4277-4294.	2.7	32
56	Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6410-E6419.	3.3	31
57	Transcriptional Regulation of Voltage-Gated Sodium Channels Contributes to GM-CSF-Induced Pain. Journal of Neuroscience, 2019, 39, 5222-5233.	1.7	29
58	Repressor element 1–silencing transcription factor drives the development of chronic pain states. Pain, 2019, 160, 2398-2408.	2.0	26
59	Activation of parabrachial nucleus - ventral tegmental area pathway underlies the comorbid depression in chronic neuropathic pain in mice. Cell Reports, 2021, 37, 109936.	2.9	24
60	GABAB receptors inhibit low-voltage activated and high-voltage activated Ca2+ channels in sensory neurons via distinct mechanisms. Biochemical and Biophysical Research Communications, 2015, 465, 188-193.	1.0	23
61	Local Ca $<$ sup $>$ 2+ $<$ /sup $>$ signals couple activation of TRPV1 and ANO1 sensory ion channels. Science Signaling, 2020, 13, .	1.6	23
62	Direct Characterization of Fluid Lipid Assemblies on Mercury in Electric Fields. ACS Nano, 2014, 8, 3242-3250.	7.3	21
63	Kv7 Channels and Excitability Disorders. Handbook of Experimental Pharmacology, 2021, 267, 185-230.	0.9	21
64	Reversible metabolic depression in hepatocytes of lamprey (Lampetra fluviatilis) during pre-spawning: regulation by substrate availability. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 147-154.	0.7	20
65	Serum- and glucocorticoid-dependent kinase, cell volume, and the regulation of epithelial transport. Comparative Biochemistry and Physiology Part A, Molecular & Dysiology, 2001, 130, 367-376.	0.8	20
66	Volume-regulated Cl ^{â^'} current: contributions of distinct Cl ^{â^'} channels and localized Ca ²⁺ signals. American Journal of Physiology - Cell Physiology, 2019, 317, C466-C480.	2.1	20
67	Regulation of the Tâ€type Ca ²⁺ channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H ₂ S in nociception. Journal of Physiology, 2016, 594, 4119-4129.	1.3	18
68	Junctophilinâ€4 facilitates inflammatory signalling at plasma membraneâ€endoplasmic reticulum junctions in sensory neurons. Journal of Physiology, 2021, 599, 2103-2123.	1.3	18
69	Redox-Dependent Modulation of T-Type Ca ²⁺ Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P. Antioxidants and Redox Signaling, 2016, 25, 233-251.	2.5	17
70	Time-dependent regulation of capacitative Ca 2+ entry by IGF-1 in human embryonic kidney cells. Pflugers Archiv European Journal of Physiology, 2002, 445, 74-79.	1.3	15
71	Transient Overexpression of Genes in Neurons Using Nucleofection. Methods in Molecular Biology, 2013, 998, 55-64.	0.4	15
72	Kv7.4 Channel Contribute to Projection-Specific Auto-Inhibition of Dopamine Neurons in the Ventral Tegmental Area. Frontiers in Cellular Neuroscience, 2019, 13, 557.	1.8	15

#	Article	IF	Citations
73	Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels. Biochemical and Biophysical Research Communications, 2016, 473, 396-402.	1.0	14
74	Peroxynitrite Mediates Disruption of Ca ²⁺ Homeostasis by Carbon Monoxide <i>via</i> Ca ²⁺ ATPase Degradation. Antioxidants and Redox Signaling, 2012, 17, 744-755.	2.5	13
75	Exogenous Expression of Proteins in Neurons Using the Biolistic Particle Delivery System., 2006, 337, 27-38.		12
76	Neuropathic Injury–Induced Plasticity of GABAergic System in Peripheral Sensory Ganglia. Frontiers in Pharmacology, 2021, 12, 702218.	1.6	10
77	Oxidative permeabilization?. Trends in Parasitology, 2002, 18, 346-347.	1.5	9
78	A correlative super-resolution protocol to visualise structural underpinnings of fast second-messenger signalling in primary cell types. Methods, 2021, 193, 27-37.	1.9	9
79	Identification of Cytoplasmic Domains within the Epithelial Na+ Channel Reactive at the Plasma Membrane. Journal of Biological Chemistry, 2002, 277, 34480-34488.	1.6	8
80	Osmosensitivity through the PIP ₂ availability: just add water. Journal of Physiology, 2010, 588, 3631-3632.	1.3	8
81	Predictors and Clinical Outcomes in Empyema Thoracis Patients Presenting to the Emergency Department Undergoing Video-Assisted Thoracoscopic Surgery. Journal of Clinical Medicine, 2019, 8, 1612.	1.0	8
82	Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes. Journal of Cellular Physiology, 2018, 233, 6377-6385.	2.0	7
83	Auxiliary subunits control biophysical properties and response to compound NS5806 of the Kv4 potassium channel complex. FASEB Journal, 2020, 34, 807-821.	0.2	7
84	Vascular Kv7 channels control intracellular Ca2+ dynamics in smooth muscle. Cell Calcium, 2020, 92, 102283.	1.1	7
85	Delineating an extracellular redox-sensitive module in T-type Ca2+ channels. Journal of Biological Chemistry, 2020, 295, 6177-6186.	1.6	6
86	Inhibition of T-type Ca2+ Channels by Hydrogen Sulfide. Advances in Experimental Medicine and Biology, 2015, 860, 353-360.	0.8	5
87	Protein disulfide isomerase modulation of TRPV1 controls heat hyperalgesia in chronic pain. Cell Reports, 2022, 39, 110625.	2.9	4
88	M-Current Recording from Acute DRG Slices. Methods in Molecular Biology, 2013, 998, 311-320.	0.4	3
89	Kv7.4 channel is a key regulator of vascular inflammation and remodeling in neointimal hyperplasia and abdominal aortic aneurysms. Free Radical Biology and Medicine, 2022, 178, 111-124.	1.3	2
90	External Pathway of NADH Oxidation in the Liver of the River Lamprey Lampetra fluviatilis. Journal of Evolutionary Biochemistry and Physiology, 2003, 39, 261-265.	0.2	1

#	Article	IF	CITATIONS
91	Novel ways to regulate T-type Ca ²⁺ channels. Channels, 2015, 9, 68-69.	1.5	1
92	Itchy channels and where to find them. Journal of Physiology, 2017, 595, 3257-3259.	1.3	1
93	Regulation of Neuronal Ion Channels by G-Protein-Coupled Receptors in Sympathetic Neurons. , 0, , 291-316.		1
94	Localised intracellular signalling in neurons. Journal of Physiology, 2016, 594, 7-8.	1.3	0
95	Fat nerves keep pain at bay. EMBO Journal, 2018, 37, .	3.5	0
96	Ion channels in somatosensory transmission: an introduction to the collection. F1000Research, 2014, 3, 278.	0.8	0
97	FGFR2 and TRPA1 Interaction in Lung Cancer. FASEB Journal, 2019, 33, lb266.	0.2	0
98	Modified working heart brainstem preparation for studying spike propagation through the dorsal root ganglion. Biophysical Journal, 2022, 121, 271a.	0.2	0
99	Inferiority complex: why do sensory ion channels multimerize?. Biochemical Society Transactions, 2022, 50, 213-222.	1.6	o