
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3857054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Research Reviews, 2000, 33, 308-379.	9.0	365
2	Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibians. Trends in Neurosciences, 1998, 21, 487-494.	8.6	209
3	Evolution of the basal ganglia: new perspectives through a comparative approach. Journal of Anatomy, 2000, 196, 501-517.	1.5	200
4	Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran <i>Rana ridibunda</i> and the urodele <i>Pleurodeles waltlii</i> . Journal of Comparative Neurology, 1991, 303, 457-477.	1.6	181
5	Basal ganglia organization in amphibians: Chemoarchitecture. Journal of Comparative Neurology, 1998, 392, 285-312.	1.6	143
6	Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana) Tj ETQq0 0 0 rgBT /Overlc 1997, 382, 499-534.	ock 10 Tf : 1.6	50 547 Td (p 140
7	Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. Journal of Comparative Neurology, 2001, 431, 105-126.	1.6	139
8	Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnioâ€amniotic transition. Journal of Anatomy, 2007, 211, 151-163.	1.5	132
9	Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). Journal of Comparative Neurology, 2000, 420, 139-170.	1.6	124
10	Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 378, 16-49.	1.6	114
11	LIMâ€homeodomain genes as developmental and adult genetic markers of <i>Xenopus</i> forebrain functional subdivisions. Journal of Comparative Neurology, 2004, 472, 52-72.	1.6	113
12	The common organization of the amygdaloid complex in tetrapods: New concepts based on developmental, hodological and neurochemical data in anuran amphibians. Progress in Neurobiology, 2006, 78, 61-90.	5.7	109
13	Afferent Connections of the Striatum and the Nucleus accumbens in the Lizard <i>Gekko gecko</i> . Brain, Behavior and Evolution, 1990, 36, 39-58.	1.7	104
14	Basal ganglia organization in amphibians: Efferent connections of the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 380, 23-50.	1.6	99
15	Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the adult trout and tract-tracing observations on the connections of the nuclei of the isthmus. Journal of Comparative Neurology, 2000, 428, 450-474.	1.6	92
16	Hodological characterization of the medial amygdala in anuran amphibians. Journal of Comparative Neurology, 2003, 466, 389-408.	1.6	92
17	Distribution of the mRNA encoding the four dopamine D1 receptor subtypes in the brain of the european eel (Anguilla anguilla): Comparative approach to the function of D1 receptors in vertebrates. Journal of Comparative Neurology, 2000, 419, 320-343.	1.6	86
18	Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 378, 50-69.	1.6	84

#	Article	IF	CITATIONS
19	Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: An immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine. Journal of Comparative Neurology, 1994, 346, 63-79.	1.6	83
20	Comparative analysis of the vasotocinergic and mesotocinergic cells and fibers in the brain of two amphibians, the anuran <i>Rana ridibunda</i> and the urodele <i>Pleurodeles waltlii</i> . Journal of Comparative Neurology, 1992, 315, 53-73.	1.6	82
21	Regional expression of the homeobox gene NKX2-1 defines pallidal and interneuronal populations in the basal ganglia of amphibians. Neuroscience, 2002, 114, 567-575.	2.3	79
22	Basal ganglia organization in amphibians: evidence for a common pattern in tetrapods. Progress in Neurobiology, 1998, 55, 363-397.	5.7	76
23	Development and evolution of the subpallium. Seminars in Cell and Developmental Biology, 2009, 20, 735-743.	5.0	74
24	Localization and connectivity of the lateral amygdala in anuran amphibians. Journal of Comparative Neurology, 2004, 479, 130-148.	1.6	73
25	Subdivisions of the turtle <i>Pseudemys scripta</i> subpallium based on the expression of regulatory genes and neuronal markers. Journal of Comparative Neurology, 2010, 518, 4877-4902.	1.6	73
26	Distribution of vasotocin- and mesotocin-like immunoreactivities in the brain of the South African clawed frog Xenopus-laevis. Journal of Chemical Neuroanatomy, 1992, 5, 465-479.	2.1	68
27	Evidences for tangential migrations in <i>Xenopus</i> telencephalon: Developmental patterns and cell tracking experiments. Developmental Neurobiology, 2008, 68, 504-520.	3.0	68
28	Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. Journal of Comparative Neurology, 2001, 434, 186-208.	1.6	67
29	Calbindinâ€Ð28k and calretinin expression in the forebrain of anuran and urodele amphibians: Further support for newly identified subdivisions. Journal of Comparative Neurology, 2008, 511, 187-220.	1.6	67
30	Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus. Neuroscience, 2008, 154, 1423-1439.	2.3	66
31	Noradrenaline in the brain of the south african clawed frog <i>Xenopus laevis</i> : A study with antibodies against noradrenaline and dopamineâ€Î²â€hydroxylase. Journal of Comparative Neurology, 1993, 331, 363-374.	1.6	65
32	Characterization of the hypothalamus of <i>Xenopus laevis</i> during development. I. The alar regions. Journal of Comparative Neurology, 2013, 521, 725-759.	1.6	63
33	Neuropeptide Y in the developing and adult brain of the South African clawed toad Xenopus laevis. Journal of Chemical Neuroanatomy, 1994, 7, 271-283.	2.1	60
34	Immunohistochemical localization of calbindinâ€Ð28k and calretinin in the brainstem of anuran and urodele amphibians. Journal of Comparative Neurology, 2009, 515, 503-537.	1.6	60
35	An Immunohistochemical Approach to Lungfish Telencephalic Organization. Brain, Behavior and Evolution, 2009, 74, 43-55.	1.7	60
36	Regionalization of the telencephalon in urodele amphibians and its bearing on the identification of the amygdaloid complex. Frontiers in Neuroanatomy, 2007, 1, 1.	1.7	57

#	Article	IF	CITATIONS
37	Spatio-temporal expression of Pax6 in Xenopus forebrain. Brain Research, 2008, 1239, 92-99.	2.2	55
38	Central amygdala in anuran amphibians: Neurochemical organization and connectivity. Journal of Comparative Neurology, 2005, 489, 69-91.	1.6	54
39	Anuran dorsal column nucleus: Organization, immunohistochemical characterization, and fiber connections in <i>Rana perezi</i> and <i>Xenopus laevis</i> . Journal of Comparative Neurology, 1995, 363, 197-220.	1.6	53
40	Lungfishes, like tetrapods, possess a vomeronasal system. Frontiers in Neuroanatomy, 2010, 4, .	1.7	53
41	Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. Journal of Comparative Neurology, 2012, 520, 330-363.	1.6	51
42	Subdivisions of the turtle <i>Pseudemys scripta</i> hypothalamus based on the expression of regulatory genes and neuronal markers. Journal of Comparative Neurology, 2012, 520, 453-478.	1.6	51
43	The Non-Evaginated Secondary Prosencephalon of Vertebrates. Frontiers in Neuroanatomy, 2011, 5, 12.	1.7	50
44	Ontogeny of NADPH diaphorase/nitric oxide synthase reactivity in the brain of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2002, 445, 59-77.	1.6	49
45	Identification of Striatal and Pallidal Regions in the Subpallium of Anamniotes. Brain, Behavior and Evolution, 2014, 83, 93-103.	1.7	49
46	Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach. Frontiers in Neuroanatomy, 2015, 9, 3.	1.7	48
47	Origin of tectal cholinergic projections in amphibians: A combined study of choline acetyltransferase immunohistochemistry and retrograde transport of dextran amines. Visual Neuroscience, 1999, 16, 271-283.	1.0	47
48	Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods. Journal of Comparative Neurology, 2011, 519, 1024-1050.	1.6	47
49	A forerunner of septohippocampal cholinergic system is present in amphibians. Neuroscience Letters, 2002, 327, 111-114.	2.1	45
50	Are putative dopamine-accumulating cell bodies in the hypothalamic periventricular organ a primitive brain character of non-mammalian vertebrates?. Neuroscience Letters, 1990, 114, 248-252.	2.1	44
51	Anatomical Substrate of Amphibian Basal Ganglia Involvement in Visuomotor Behaviour. European Journal of Neuroscience, 1997, 9, 2100-2109.	2.6	43
52	Localization of NADPH diaphorase/nitric oxide synthase and choline acetyltransferase in the spinal cord of the frog,Rana perezi. Journal of Comparative Neurology, 2000, 419, 451-470.	1.6	43
53	Cholinergic and GABAergic neuronal elements in the pineal organ of lampreys, and tract-tracing observations of differential connections of pinealofugal neurons. Cell and Tissue Research, 1999, 295, 215-223.	2.9	42
54	Cerebellar connections in Xenopus laevis. Anatomy and Embryology, 1984, 169, 167-176.	1.5	40

#	Article	IF	CITATIONS
55	Development of the vomeronasal amygdala in anuran amphibians: Hodological, neurochemical, and gene expression characterization. Journal of Comparative Neurology, 2007, 503, 815-831.	1.6	39
56	Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, <i>Pleurodeles waltl</i> . Journal of Comparative Neurology, 2013, 521, 2088-2124.	1.6	39
57	Distribution of tyrosine hydroxylase immunoreactivity in the brain of Typhlonectes compressicauda (Amphibia, Gymnophiona): further assessment of primitive and derived traits of amphibian catecholamine systems. Journal of Chemical Neuroanatomy, 1994, 8, 19-32.	2.1	38
58	Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs. , 1997, 383, 349-369.		38
59	Vasotocin and mesotocin in the brains of amphibians: State of the art. Microscopy Research and Technique, 2001, 54, 125-136.	2.2	38
60	Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. Journal of Comparative Neurology, 2001, 434, 209-232.	1.6	38
61	Development of NADPH-diaphorase/nitric oxide synthase in the brain of the urodele amphibian Pleurodeles waltl. Journal of Chemical Neuroanatomy, 2002, 23, 105-121.	2.1	37
62	Organization of cholinergic systems in the brain of different fish groups: a comparative analysis. Brain Research Bulletin, 2002, 57, 331-334.	3.0	36
63	Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. Journal of Chemical Neuroanatomy, 2010, 39, 20-34.	2.1	35
64	Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. Journal of Comparative Neurology, 2012, 520, Spc1-Spc1.	1.6	35
65	Characterization of the hypothalamus of <i>Xenopus laevis</i> during development. II. The basal regions. Journal of Comparative Neurology, 2014, 522, 1102-1131.	1.6	35
66	Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, <i>Dermophis mexicanus</i> (Amphibia: Gymnophiona). Journal of Comparative Neurology, 2002, 448, 249-267.	1.6	34
67	Distribution of NADPH-Diaphorase/Nitric Oxide Synthase in the Brain of the Caecilian <i>Dermophis mexicanus</i> (Amphibia: Gymnophiona): Comparative Aspects in Amphibians. Brain, Behavior and Evolution, 2002, 60, 80-100.	1.7	32
68	Choline acetyltransferase immunoreactivity in the developing brain of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2002, 453, 418-434.	1.6	32
69	Catecholaminergic innervation of the septum in the frog: A combined immunohistochemical and tractâ€ŧracing study. Journal of Comparative Neurology, 2003, 455, 310-323.	1.6	31
70	Forebrain projections to the hypothalamus are topographically organized in anurans: conservative traits as compared with amniotes. European Journal of Neuroscience, 2005, 21, 1895-1910.	2.6	31
71	Sonic hedgehog expression during Xenopus laevis forebrain development. Brain Research, 2010, 1347, 19-32.	2.2	31
72	Choline acetyltransferase immunoreactive neurons innervating labyrinthine and lateral line sense organs in amphibians. Journal of Comparative Neurology, 1993, 332, 258-268.	1.6	29

#	Article	IF	CITATIONS
73	Immunohistochemical localization of calbindinâ€D28k and calretinin in the spinal cord of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2006, 494, 763-783.	1.6	29
74	Development of catecholamine systems in the central nervous system of the newtPleurodeles waltliias revealed by tyrosine hydroxylase immunohistochemistry. Journal of Comparative Neurology, 1995, 360, 33-48.	1.6	28
75	Distribution of vasotocin- and mesotocin-like immunoreactivities in the brain of Typhlonectes compressicauda (Amphibia, Gymnophiona): further assessment of primitive and derived traits of amphibian neuropeptidergic systems. Cell and Tissue Research, 1997, 287, 305-314.	2.9	28
76	Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. Peptides, 2009, 30, 873-887.	2.4	28
77	Distribution of Orexin/Hypocretin Immunoreactivity in the Brain of the Lungfishes <i>Protopterus dolloi</i> and <i>Neoceratodus forsteri</i> . Brain, Behavior and Evolution, 2009, 74, 302-322.	1.7	28
78	Evidence for a mesolimbic pathway in anuran amphibians: a combined tract-tracing/immunohistochemical study. Neuroscience Letters, 1995, 190, 183-186.	2.1	27
79	LIM-homeodomain genes as territory markers in the brainstem of adult and developingXenopus laevis. Journal of Comparative Neurology, 2005, 485, 240-254.	1.6	27
80	Ontogenetic Distribution of the Transcription Factor Nkx2.2 in the Developing Forebrain of Xenopus Laevis. Frontiers in Neuroanatomy, 2011, 5, 11.	1.7	27
81	Expression and function of the LIM-homeodomain transcription factor Islet-1 in the developing and mature vertebrate retina. Experimental Eye Research, 2015, 138, 22-31.	2.6	27
82	Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis. Frontiers in Neuroanatomy, 2017, 11, 24.	1.7	25
83	Ontogeny of vasotocinergic and mesotocinergic systems in the brain of the South African clawed frog Xenopus laevis. Journal of Chemical Neuroanatomy, 1995, 9, 27-40.	2.1	24
84	Immunohistochemical localization of DARPPâ€32 in the brain of the lizard, <i>Gekko gecko</i> : Coâ€occurrence with tyrosine hydroxylase. Journal of Comparative Neurology, 2001, 435, 194-210.	1.6	24
85	Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Structure and Function, 2012, 217, 549-576.	2.3	24
86	Spatiotemporal patterns of Pax3, Pax6 and Pax7 expression in the developing brain of a urodele amphibian,Pleurodeles waltl. Journal of Comparative Neurology, 2013, 521, n/a-n/a.	1.6	24
87	Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir <i>Polypterus senegalus</i> . Journal of Comparative Neurology, 2013, 521, 24-49.	1.6	24
88	Comparative Analysis of Nkx2.1 and Islet-1 Expression in Urodele Amphibians and Lungfishes Highlights the Pattern of Forebrain Organization in Early Tetrapods. Frontiers in Neuroanatomy, 2018, 12, 42.	1.7	24
89	Spinothalamic projections in amphibians as revealed with anterograde tracing techniques. Neuroscience Letters, 1994, 171, 81-84.	2.1	23
90	Evidence for an Anuran Homologue of the Mammalian Spinocervicothalamic System: AnIn VitroTract-tracing Study inXenopus laevis. European Journal of Neuroscience, 1996, 8, 1390-1400.	2.6	23

#	Article	IF	CITATIONS
91	Choline acetyltransferase-immunoreactive neurons in the retina of adult and developing lampreys. Brain Research, 2003, 993, 154-163.	2.2	23
92	Distribution of adrenomedullin-like immunoreactivity in the central nervous system of the frog. Journal of Chemical Neuroanatomy, 2001, 21, 105-123.	2.1	22
93	Lateral and medial amygdala of anuran amphibians and their relation to olfactory and vomeronasal information. Brain Research Bulletin, 2005, 66, 332-336.	3.0	22
94	Basal forebrain cholinergic system of the anuran amphibian <i>Rana perezi</i> : Evidence for a shared organization pattern with amniotes. Journal of Comparative Neurology, 2006, 494, 961-975.	1.6	22
95	Pallial origin of mitral cells in the olfactory bulbs of Xenopus. NeuroReport, 2003, 14, 2355-2358.	1.2	21
96	Comparative analysis of calbindin D-28K and calretinin in the retina of anuran and urodele amphibians: Colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Research, 2007, 1182, 34-49.	2.2	21
97	Organization of the Serotonergic System in the Central Nervous System of Two Basal Actinopterygian Fishes: the Cladistians <i>Polypterus senegalus</i> and <i>Erpetoichthys calabaricus</i> . Brain, Behavior and Evolution, 2014, 83, 54-76.	1.7	21
98	Distribution and origin of the catecholaminergic innervation in the amphibian mesencephalic tectum. Visual Neuroscience, 2002, 19, 321-333.	1.0	20
99	Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi,) Tj ETQq1 1 (25, 53-71.	0.784314 2.1	rgBT /Overloc 20
100	Colocalization of nitric oxide synthase and monoamines in neurons of the amphibian brain. Brain Research Bulletin, 2005, 66, 555-559.	3.0	20
101	Central distribution of the efferent cells and the primary afferent fibers of the trigeminal nerve in <i>Pleurodeles waltlii</i> (Amphibia, urodela). Journal of Comparative Neurology, 1988, 270, 517-527.	1.6	19
102	Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase. Brain Research Bulletin, 2006, 69, 519-534.	3.0	19
103	Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis. Journal of Chemical Neuroanatomy, 2014, 57-58, 24-41.	2.1	19
104	Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. Journal of Comparative Neurology, 2017, 525, 3083-3109.	1.6	19
105	Gene expression analysis of developing cell groups in the pretectal region of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2017, 525, 715-752.	1.6	19
106	Somatostatin-like immunoreactivity in the brain of the urodele amphibian Pleurodeles waltl. Brain Research, 2003, 965, 246-258.	2.2	18
107	Immunohistochemical localization of DARPP-32 in the brain of the turtle, Pseudemys scripta elegans: further assessment of its relationship with dopaminergic systems in reptiles. Journal of Chemical Neuroanatomy, 2003, 25, 83-95.	2.1	18
108	Immunohistochemical localization of calbindin D28k and calretinin in the retina of two lungfishes, Protopterus dolloi and Neoceratodus forsteri: Colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Research, 2011, 1368, 28-43.	2.2	18

#	Article	IF	CITATIONS
109	Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis. Frontiers in Neuroanatomy, 2015, 9, 107.	1.7	18
110	Localization of adrenomedullin-like immunoreactivity in the hypothalamo-hypophysial system of amphibians. Neuroscience Letters, 1998, 242, 13-16.	2.1	17
111	Tyrosine hydroxylase immunoreactive neurons in the forebrain of the trout: organization, cellular features and innervation. Brain Research Bulletin, 2002, 57, 389-392.	3.0	17
112	Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development. Frontiers in Neuroanatomy, 2013, 7, 48.	1.7	17
113	Some connections of the area octavolateralis pf Pleurodeles waltlii. A study with horseradish peroxidase under in vitro conditions. Brain Research, 1987, 423, 338-342.	2.2	16
114	Distribution of somatostatinâ€like immunoreactivity in the brain of the caecilian <i>Dermophis mexicanus</i> (amphibia: Gymnophiona): Comparative aspects in amphibians. Journal of Comparative Neurology, 2007, 501, 413-430.	1.6	16
115	Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord inXenopus laeviswith emphasis on the catecholaminergic inputs. Journal of Comparative Neurology, 2002, 446, 11-24.	1.6	15
116	Distribution of neuropeptide FF-like immunoreactivity in the brain of the lizardGekko gecko and its relation to catecholaminergic structures. Journal of Comparative Neurology, 2006, 498, 31-45.	1.6	14
117	Immunohistochemical and hodological characterization of calbindinâ€D28kâ€containing neurons in the spinal cord of the turtle, <i>Pseudemys scripta elegans</i> . Microscopy Research and Technique, 2007, 70, 101-118.	2.2	14
118	Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles. Journal of Chemical Neuroanatomy, 2008, 36, 251-263.	2.1	14
119	Anuran olfactory bulb organization: Embryology, neurochemistry and hodology. Brain Research Bulletin, 2008, 75, 241-245.	3.0	14
120	Localization of Calbindin-D28k and Calretinin in the Brain of Dermophis Mexicanus (Amphibia:) Tj ETQq0 0 0 rgB1 Brain, Behavior and Evolution, 2011, 77, 231-269.	/Overlocl 1.7	10 Tf 50 30 14
121	Comparative Analysis of the Organization of the Cholinergic System in the Brains of Two Holostean Fishes, the Florida Gar <i>Lepisosteus platyrhincus</i> and the Bowfin <i>Amia calva</i> . Brain, Behavior and Evolution, 2013, 81, 109-142.	1.7	14
122	Conserved localization of Pax6 and Pax7 transcripts in the brain of representatives of sarcopterygian vertebrates during development supports homologous brain regionalization. Frontiers in Neuroanatomy, 2014, 8, 75.	1.7	14
123	Organization of the catecholaminergic systems in two basal actinopterygian fishes, <scp><i>Polypterus senegalus</i></scp> and <scp><i>Erpetoichthys calabaricus</i></scp> (Actinopterygii: Cladistia). Journal of Comparative Neurology, 2019, 527, 437-461.	1.6	14
124	Distribution of neuropeptide FF-like immunoreactive structures in the lamprey central nervous system and its relation to catecholaminergic neuronal structures. Peptides, 2006, 27, 1054-1072.	2.4	13
125	Pattern of calbindinâ€D28k and calretinin immunoreactivity in the brain of <i>Xenopus laevis</i> during embryonic and larval development. Journal of Comparative Neurology, 2013, 521, 79-108.	1.6	13
126	Comparative analysis of the serotonergic systems in the CNS of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Structure and Function, 2015, 220, 385-405.	2.3	13

#	Article	IF	CITATIONS
127	Pattern of Nitrergic Neuronal System Organization in the Brain of Two Holostean Fishes (Actinopterygii: Ginglymodi). Brain, Behavior and Evolution, 2017, 89, 117-152.	1.7	13
128	Cholinergic and Catecholaminergic Neurons Relay Striatal Information to the Optic Tectum in Amphibians. European Journal of Morphology, 1999, 37, 155-159.	0.8	13
129	Distribution and morphology of abducens motoneurons innervating the lateral rectus and retractor bulbi muscles in the frog Rana ridibunda. Neuroscience Letters, 1987, 79, 29-34.	2.1	12
130	Distribution, morphology, and central projections of mesencephalic trigeminal neurons in the frogRana ridibunda. The Anatomical Record, 1993, 235, 165-177.	1.8	12
131	Comparative analysis of adrenomedullinâ€ŀike immunoreactivity in the hypothalamus of amphibians. Microscopy Research and Technique, 2001, 54, 173-187.	2.2	12
132	Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Brain Research Bulletin, 2002, 57, 325-330.	3.0	12
133	Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. Journal of Chemical Neuroanatomy, 2010, 40, 325-338.	2.1	12
134	Islet-1 Immunoreactivity in the Developing Retina of <i>Xenopus laevis</i> . Scientific World Journal, The, 2013, 2013, 1-11.	2.1	12
135	Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides, 2014, 61, 23-37.	2.4	11
136	Organization of the nitrergic neuronal system in the primitive bony fishes <i>Polypterus senegalus</i> and <i>Erpetoichthys calabaricus</i> (Actinopterygii: Cladistia). Journal of Comparative Neurology, 2016, 524, 1770-1804.	1.6	11
137	Comparative Analysis of the Organization of the Catecholaminergic Systems in the Brain of Holostean Fishes (Actinopterygii/Neopterygii). Brain, Behavior and Evolution, 2019, 93, 206-235.	1.7	11
138	Evidences for Shared Features in the Organization of the Basal Ganglia in Tetrapods: Studies in Amphibians. European Journal of Morphology, 1999, 37, 151-154.	0.8	10
139	Trigeminal primary afferent projections to the spinal cord of the frog,Rana ridibunda. Journal of Morphology, 1993, 217, 137-146.	1.2	9
140	Localization of choline acetyltransferase in the developing and adult retina of Xenopus laevis. Neuroscience Letters, 2002, 330, 61-64.	2.1	9
141	Ontogeny of choline acetyltransferase (ChAT) immunoreactivity in the brain of the urodele amphibian Pleurodeles waltl. Developmental Brain Research, 2003, 140, 29-43.	1.7	9
142	Calbindin-D28k and calretinin as markers of retinal neurons in the anuran amphibian Rana perezi. Brain Research Bulletin, 2008, 75, 379-383.	3.0	9
143	Immunohistochemical Localization of Calbindin-D28k and Calretinin in the Spinal Cord of Lungfishes. Brain, Behavior and Evolution, 2010, 76, 198-210.	1.7	9
144	A Reinterpretation of the Cytoarchitectonics of the Telencephalon of the Comoran Coelacanth. Frontiers in Neuroanatomy, 2011, 5, 9.	1.7	9

#	Article	IF	CITATIONS
145	Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development. Brain Structure and Function, 2013, 218, 969-1003.	2.3	9
146	Immunohistochemical Localization of DARPP-32 in the Brain of Two Lungfishes: Further Assessment of Its Relationship with the Dopaminergic System. Brain, Behavior and Evolution, 2017, 90, 289-310.	1.7	9
147	Organization of the Caudal Rhombencephalic Alar Plate of the Ribbed Newt <i>Pleurodeles waltl: </i> Evidence for the Presence of Dorsal Column and Lateral Cervical Nuclei. Brain, Behavior and Evolution, 1998, 51, 162-182.	1.7	8
148	Early development of NADPH diaphorase-expressing neurons in the brain of the urodele amphibian Pleurodeles waltl. Brain Research Bulletin, 2002, 57, 409-412.	3.0	8
149	Distribution of Thyrotropin-Releasing Hormone (TRH) Immunoreactivity in the Brain of Urodele Amphibians. Brain, Behavior and Evolution, 2008, 71, 231-246.	1.7	8
150	Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. Journal of Comparative Neurology, 2020, 528, 139-163.	1.6	8
151	Calbindin-D28k immunoreactivity in the spinal cord of Xenopus laevis and its participation in ascending and descending projections. Brain Research Bulletin, 2005, 66, 550-554.	3.0	7
152	Distribution of Neuropeptide FF-Like Immunoreactivity in the Brain of <i>Dermophis mexicanus</i> (Amphibia; Gymnophiona): Comparison with FMRFamide Immunoreactivity. Brain, Behavior and Evolution, 2006, 67, 150-164.	1.7	7
153	Immunohistochemical localization of neuropeptide FF-like in the brain of the turtle: Relation to catecholaminergic structures. Brain Research Bulletin, 2008, 75, 256-260.	3.0	7
154	Organization of the Orexin/Hypocretin System in the Brain of Holostean Fishes: Assessment of Possible Relationships with Monoamines and Neuropeptide Y. Brain, Behavior and Evolution, 2018, 91, 228-251.	1.7	7
155	Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry. Neuroscience Letters, 2007, 425, 73-77.	2.1	6
156	Regional chemoarchitecture of the brain of lungfishes based on calbindin Dâ€28K and calretinin immunohistochemistry. Journal of Comparative Neurology, 2018, 526, 1457-1497.	1.6	6
157	Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, <scp><i>Neoceratodus forsteri</i></scp> (Sarcopterygii: Dipnoi). Journal of Comparative Neurology, 2019, 527, 1771-1800.	1.6	6
158	Amphibian thalamic nuclear organization during larval development and in the adult frog <i>Xenopus laevis</i> : Genoarchitecture and hodological analysis. Journal of Comparative Neurology, 2020, 528, 2361-2403.	1.6	6
159	Spatiotemporal sequence of appearance of NPFF-immunoreactive structures in the developing central nervous system of Xenopus laevis. Peptides, 2006, 27, 1036-1053.	2.4	5
160	Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. Brain, Behavior and Evolution, 2016, 88, 127-146.	1.7	5
161	Distribution of adrenomedullin-like immunoreactivity in the brain of the adult sea lamprey. Brain Research Bulletin, 2008, 75, 261-265.	3.0	4
162	Adaptive Function and Brain Evolution. Frontiers in Neuroanatomy, 2012, 6, 17.	1.7	4

#	Article	IF	CITATIONS
163	Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Structure and Function, 2020, 225, 2239-2269.	2.3	4
164	Neuroanatomical Distribution of the Serotonergic System in the Brain and Retina of Holostean Fishes, The Sister Group to Teleosts. Brain, Behavior and Evolution, 2020, 95, 25-44.	1.7	4
165	The trochlear nucleus of the frog Rana ridibunda: Localization, morphology and ultrastructure of identified motoneurons. Brain Research Bulletin, 1995, 36, 433-441.	3.0	3
166	Choline Acetyltransferase Immunoreactivity in the Hypothalamoneurohypophysial System of the Lamprey. European Journal of Morphology, 1999, 37, 103-106.	0.8	3
167	Comparative Analysis of Descending Supraspinal Projections in Amphibians. , 0, , 187-226.		2
168	Neuropeptides in the amphibian brain: New insights. Microscopy Research and Technique, 2001, 54, 123-124.	2.2	1
169	Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	1.6	1
170	Development of the Hypothalamus in Xenopus laevis. Masterclass in Neuroendocrinology, 2020, , 67-82.	0.1	1
171	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		0
172	Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. Journal of Comparative Neurology, 2009, 515, spc1-spc1.	1.6	0
173	Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. Journal of Comparative Neurology, 2009, 515, spc1-spc1.	1.6	0
174	Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. Journal of Comparative Neurology, 2017, 525, spc1-spc1.	1.6	0