
Narayana M Upadhyaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3857038/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Rice Mutant Resources for Gene Discovery. Plant Molecular Biology, 2004, 54, 325-334.	2.0	221
2	Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology, 2009, 9, 149.	1.6	210
3	Loss of <i>AvrSr50</i> by somatic exchange in stem rust leads to virulence for <i>Sr50</i> resistance in wheat. Science, 2017, 358, 1607-1610.	6.0	206
4	Mutant Resources in Rice for Functional Genomics of the Grasses. Plant Physiology, 2009, 149, 165-170.	2.3	167
5	The ANTHER INDEHISCENCE1 Gene Encoding a Single MYB Domain Protein Is Involved in Anther Development in Rice. Plant Physiology, 2004, 135, 1514-1525.	2.3	152
6	Antisense suppression of the rice transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Functional Plant Biology, 2002, 29, 815.	1.1	143
7	The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Frontiers in Plant Science, 2014, 5, 98.	1.7	126
8	Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry, 2007, 68, 312-326.	1.4	124
9	Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. Nature Communications, 2019, 10, 5068.	5.8	121
10	The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant Journal, 2003, 34, 1-11.	2.8	119
11	A Bacterial Type III Secretion Assay for Delivery of Fungal Effector Proteins into Wheat. Molecular Plant-Microbe Interactions, 2014, 27, 255-264.	1.4	111
12	Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing. PLoS ONE, 2013, 8, e67150.	1.1	110
13	Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Frontiers in Plant Science, 2014, 5, 759.	1.7	98
14	The wheat durable, multipathogen resistance gene <i>Lr34</i> confers partial blast resistance in rice. Plant Biotechnology Journal, 2016, 14, 1261-1268.	4.1	98
15	A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nature Biotechnology, 2021, 39, 561-566.	9.4	94
16	The Ins and Outs of Rust Haustoria. PLoS Pathogens, 2014, 10, e1004329.	2.1	90
17	Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnology Journal, 2003, 1, 361-369.	4.1	81
18	Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Functional Plant Biology, 2006, 33, 153.	1.1	77

2

Narayana M Upadhyaya

#	Article	IF	CITATIONS
19	Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biology, 2003, 3, 6.	1.6	67
20	Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nature Plants, 2021, 7, 1220-1228.	4.7	67
21	An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Functional Plant Biology, 2002, 29, 547.	1.1	65
22	Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Reports, 2005, 23, 819-833.	2.8	61
23	Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics, 2016, 17, 667.	1.2	59
24	Comparison of promoters and selectable marker genes for use in Indica rice transformation. Molecular Breeding, 1997, 3, 1-14.	1.0	58
25	<i>De Novo</i> Assembly and Phasing of Dikaryotic Genomes from Two Isolates of <i>Puccinia coronata</i> f. sp. <i>avenae</i> , the Causal Agent of Oat Crown Rust. MBio, 2018, 9, .	1.8	57
26	Protein extraction from mature rice leaves for two-dimensional gel electrophoresis and its application in proteome analysis. Proteomics, 2004, 4, 1903-1908.	1.3	54
27	Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nature Communications, 2020, 11, 1123.	5.8	52
28	Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theoretical and Applied Genetics, 2006, 112, 1326-1341.	1.8	51
29	SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation. PLoS Genetics, 2015, 11, e1005464.	1.5	51
30	Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors. Frontiers in Plant Science, 2014, 5, 372.	1.7	45
31	Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici. Frontiers in Plant Science, 2016, 7, 205.	1.7	45
32	A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnology Journal, 2004, 2, 367-380.	4.1	40
33	Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems. PLoS ONE, 2014, 9, e84995.	1.1	39
34	The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theoretical and Applied Genetics, 2015, 128, 1407-1419.	1.8	39
35	A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nature Communications, 2021, 12, 3378.	5.8	39
36	Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Functional Plant Biology, 2000, 27, 201.	1.1	38

Narayana M Upadhyaya

#	Article	IF	CITATIONS
37	Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biology, 2014, 14, 379.	1.6	36
38	Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. Plant Science, 2006, 171, 308-322.	1.7	34
39	The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surfaceâ€exposed residue. New Phytologist, 2022, 234, 592-606.	3.5	32
40	Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data. Genome Biology, 2022, 23, 84.	3.8	31
41	Evidence for Cytokinin Involvement in Rhizobium (IC3342)-Induced Leaf Curl Syndrome of Pigeonpea (Cajanus cajan Millsp.). Plant Physiology, 1991, 95, 1019-1025.	2.3	26
42	Title is missing!. Molecular Breeding, 2003, 11, 295-301.	1.0	26
43	<i>De Novo</i> Genome Assembly and Comparative Genomics of the Barley Leaf Rust Pathogen <i>Puccinia hordei</i> Identifies Candidates for Three Avirulence Genes. G3: Genes, Genomes, Genetics, 2019, 9, 3263-3271.	0.8	25
44	Rice ragged stunt oryzavirus genome segment S4 could encode an RNA dependent RNA polymerase and a second protein of unknown function. Archives of Virology, 1998, 143, 1815-1822.	0.9	23
45	Factors affecting nitrogenase activity (C ₂ H ₂ reduction) associated with sorghum and millet estimated using the soil core assay. Canadian Journal of Microbiology, 1983, 29, 1063-1069.	0.8	22
46	Molecular analysis of rice ragged stunt oryzavirus segment 9 and sequence conservation among isolates from Thailand and India. Archives of Virology, 1995, 140, 1945-1956.	0.9	22
47	TheM r 43K major capsid protein of rice ragged stunt oryzavirus is a post-translationally processed product of aM r 67 348 polypeptide encoded by genome segment 8. Archives of Virology, 1996, 141, 1689-1701.	0.9	22
48	Rice ragged stunt oryzavirus genome segments S7 and S10 encode non-structural proteins of Mr 68 025 (Pns7) and Mr 32 364 (Pns10). Archives of Virology, 1997, 142, 1719-1726.	0.9	22
49	An intact plant assay for estimating nitrogenase activity (C2H2 reduction) of sorghum and millet plants grown in pots. Plant and Soil, 1984, 82, 15-29.	1.8	21
50	Decreased accumulation of glutelin types in rice grains constitutively expressing a sunflower seed albumin gene. Phytochemistry, 2005, 66, 2534-2539.	1.4	21
51	Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Functional Plant Biology, 2001, 28, 241.	1.1	19
52	Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Functional Plant Biology, 2001, 28, 807.	1.1	19
53	Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Functional Plant Biology, 2001, 28, 149.	1.1	18
54	A novel T-DNA vector design for selection of transgenic lines with simple transgene integration and stable transgene expression. Functional Plant Biology, 2005, 32, 671.	1.1	18

#	Article	lF	CITATIONS
55	Genome segment 5 of rice ragged stunt virus encodes avirion protein. Journal of General Virology, 1996, 77, 3155-3160.	1.3	17
56	A Bacterial Type III Secretion-Based Delivery System for Functional Assays of Fungal Effectors in Cereals. Methods in Molecular Biology, 2014, 1127, 277-290.	0.4	15
57	The stem rust fungus Puccinia graminis f. sp. tritici induces centromeric small RNAs during late infection that are associated with genome-wide DNA methylation. BMC Biology, 2021, 19, 203.	1.7	15
58	Thetms2 gene as a negative selection marker in rice. Plant Molecular Biology Reporter, 2000, 18, 227-233.	1.0	12
59	Transposon Insertional Mutants: A Resource for Rice Functional Genomics. , 2007, , 223-271.		12
60	compact shoot and leafy head 1, a mutation affects leaf initiation and developmental transition in rice (Oryza sativa L.). Plant Cell Reports, 2007, 26, 421-427.	2.8	12
61	Identification of a Serratia entomophila genetic locus encoding amber disease in New Zealand grass grub (Costelytra zealandica). Journal of Bacteriology, 1992, 174, 1020-1028.	1.0	8
62	Transposon Insertional Mutagenesis in Rice. Methods in Molecular Biology, 2011, 678, 147-177.	0.4	8
63	Isolation and Characterization ofRhizobium(IC3342) Genes that Determine Leaf Curl Induction in Pigeon Pea. Molecular Plant-Microbe Interactions, 1992, 5, 129.	1.4	7
64	Mutant Resources for Functional Analysis of the Rice Genome. , 2013, , 81-115.		6
65	Leaf curl syndrome of pigeonpea (Cajanus cajan (L.) Millsp.) is a systemic response to effective nodulation by the Rhizobium strain IC3342. Physiological and Molecular Plant Pathology, 1991, 38, 357-373.	1.3	4
66	Rice Gene Machine: A Vehicle for Finding Functions of Cereal Genes. Asia Pacific Biotech News, 2002, 06, 936-942.	0.5	4
67	RGMIMS: a web-based Laboratory Information Management System for plant functional genomics research. Molecular Breeding, 2008, 22, 151-157.	1.0	4
68	Rice Gene Machine: A Vehicle for Finding Functions of Cereal Genes. , 2003, , 79-92.		1
69	A gene machine for rice. , 2008, , 352-355.		1
70	Biotech Crops and Functional Genomics. , 2010, , 359-390.		0
71	Rice Genomics. , 2010, , 257-279.		0