## Marta Artola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3856730/publications.pdf Version: 2024-02-01



Μλατλ Δατοιλ

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish Journal of<br>Lipid Research, 2022, , 100199.                                                                                         | 2.0 | 9         |
| 2  | Human glucocerebrosidase mediates formation of xylosyl-cholesterol by β-xylosidase and transxylosidase reactions. Journal of Lipid Research, 2021, 62, 100018.                                                                | 2.0 | 5         |
| 3  | Activity-Based Protein Profiling of Retaining α-Amylases in Complex Biological Samples. Journal of the American Chemical Society, 2021, 143, 2423-2432.                                                                       | 6.6 | 17        |
| 4  | Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent<br>βâ€ <scp>lâ€</scp> Arabinofuranosidase Inhibitor. Angewandte Chemie - International Edition, 2021, 60,<br>5754-5758.                             | 7.2 | 16        |
| 5  | Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions.<br>Biomolecules, 2021, 11, 271.                                                                                            | 1.8 | 50        |
| 6  | Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent<br>βâ€ <scp>lâ€</scp> Arabinofuranosidase Inhibitor. Angewandte Chemie, 2021, 133, 5818-5822.                                                       | 1.6 | 3         |
| 7  | Targeting the FtsZ Allosteric Binding Site with a Novel Fluorescence Polarization Screen, Cytological and Structural Approaches for Antibacterial Discovery. Journal of Medicinal Chemistry, 2021, 64, 5730-5745.             | 2.9 | 11        |
| 8  | Xyloseâ€Configured Cyclophellitols as Selective Inhibitors for Glucocerebrosidase. ChemBioChem, 2021, 22, 3090-3098.                                                                                                          | 1.3 | 4         |
| 9  | Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Chemistry - A<br>European Journal, 2021, 27, 16377-16388.                                                                                     | 1.7 | 7         |
| 10 | Discovering the Microbial Enzymes Driving Drug Toxicity with Activity-Based Protein Profiling. ACS Chemical Biology, 2020, 15, 217-225.                                                                                       | 1.6 | 46        |
| 11 | Rational Design of Mechanism-Based Inhibitors and Activity-Based Probes for the Identification of<br>Retaining α- <scp>l</scp> -Arabinofuranosidases. Journal of the American Chemical Society, 2020, 142,<br>4648-4662.      | 6.6 | 33        |
| 12 | Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. Frontiers in Plant Science, 2020, 11, 357.                                                                                                              | 1.7 | 63        |
| 13 | Structure of a GH51 α- <scp>L</scp> -arabinofuranosidase from <i>Meripilus giganteus</i> : conserved substrate recognition from bacteria to fungi. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1124-1133. | 1.1 | 8         |
| 14 | An overview of activity-based probes for glycosidases. Current Opinion in Chemical Biology, 2019, 53, 25-36.                                                                                                                  | 2.8 | 76        |
| 15 | α- <scp>d</scp> -Gal-cyclophellitol cyclosulfamidate is a Michaelis complex analog that stabilizes<br>therapeutic lysosomal α-galactosidase A in Fabry disease. Chemical Science, 2019, 10, 9233-9243.                        | 3.7 | 11        |
| 16 | Functionalized Cyclophellitols Are Selective Glucocerebrosidase Inhibitors and Induce a Bona Fide<br>Neuropathic Gaucher Model in Zebrafish. Journal of the American Chemical Society, 2019, 141,<br>4214-4218.               | 6.6 | 28        |
| 17 | Role of μ-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase<br>deficiency in zebrafish. Journal of Lipid Research, 2019, 60, 1851-1867.                                                     | 2.0 | 29        |
| 18 | Glycosphingolipids and lysosomal storage disorders as illustrated by gaucher disease. Current Opinion in Chemical Biology, 2019, 53, 204-215.                                                                                 | 2.8 | 38        |

MARTA ARTOLA

| #  | Article                                                                                                                                                                                                                                                     | IF           | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 19 | Direct Stereoselective Aziridination of Cyclohexenols with<br>3â€Aminoâ€2â€{trifluoromethyl)quinazolinâ€4(3 <i>H</i> )â€one in the Synthesis of Cyclitol Aziridine Glycosidase<br>Inhibitors. European Journal of Organic Chemistry, 2019, 2019, 1397-1404. | e <b>1.2</b> | 5         |
| 20 | <i>InÂvivo</i> inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activityâ€based protein profiling. FEBS Journal, 2019, 286, 584-600.                                                                                  | 2.2          | 44        |
| 21 | Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A<br>deficiency associated with Fabry disease. Journal of Biological Chemistry, 2018, 293, 10042-10058.                                                        | 1.6          | 20        |
| 22 | Activity-Based Probes for Glycosidases: Profiling and Other Applications. Methods in Enzymology, 2018, 598, 217-235.                                                                                                                                        | 0.4          | 21        |
| 23 | Gluco-1 <i>H</i> -imidazole: A New Class of Azole-Type β-Glucosidase Inhibitor. Journal of the American<br>Chemical Society, 2018, 140, 5045-5048.                                                                                                          | 6.6          | 17        |
| 24 | New Irreversible αâ€ <scp>l</scp> â€lduronidase Inhibitors and Activityâ€Based Probes. Chemistry - A European<br>Journal, 2018, 24, 19081-19088.                                                                                                            | 1.7          | 9         |
| 25 | Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. Journal of Lipid Research, 2018, 59, 2262-2276.                                                                                               | 2.0          | 12        |
| 26 | Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors. Journal of the American Chemical<br>Society, 2017, 139, 6534-6537.                                                                                                                      | 6.6          | 24        |
| 27 | Novel activity-based probes for N-acylethanolamine acid amidase. Chemical Communications, 2017, 53, 11810-11813.                                                                                                                                            | 2.2          | 7         |
| 28 | Chemical Proteomics Identifies SLC25A20 as a Functional Target of the Ingenol Class of Actinic<br>Keratosis Drugs. ACS Central Science, 2017, 3, 1276-1285.                                                                                                 | 5.3          | 47        |
| 29 | Towards broad spectrum activity-based glycosidase probes: synthesis and evaluation of deoxygenated cyclophellitol aziridines. Chemical Communications, 2017, 53, 12528-12531.                                                                               | 2.2          | 27        |
| 30 | 1,6-Cyclophellitol Cyclosulfates: A New Class of Irreversible Glycosidase Inhibitor. ACS Central<br>Science, 2017, 3, 784-793.                                                                                                                              | 5.3          | 43        |
| 31 | The structural assembly switch of cell division protein FtsZ probed with fluorescent allosteric inhibitors. Chemical Science, 2017, 8, 1525-1534.                                                                                                           | 3.7          | 33        |
| 32 | Activity-based probes for functional interrogation of retaining β-glucuronidases. Nature Chemical<br>Biology, 2017, 13, 867-873.                                                                                                                            | 3.9          | 76        |
| 33 | The Synthesis of Cyclophellitolâ€Aziridine and Its Configurational and Functional Isomers. European<br>Journal of Organic Chemistry, 2016, 2016, 3671-3678.                                                                                                 | 1.2          | 14        |
| 34 | A Divergent Synthesis of <scp>l</scp> â€ <i>arabino</i> ―and <scp>d</scp> â€ <i>xylo</i> onfigured<br>Cyclophellitol Epoxides and Aziridines. European Journal of Organic Chemistry, 2016, 2016, 4787-4794.                                                 | 1.2          | 19        |
| 35 | Identification of a Novel Orally Bioavailable Phosphodiesterase 10A (PDE10A) Inhibitor with Efficacy in Animal Models of Schizophrenia Journal of Medicinal Chemistry, 2015, 58, 978-993.                                                                   | 2.9          | 16        |
| 36 | Role of Cannabinoid Receptor CB2 in HER2 Pro-oncogenic Signaling in Breast Cancer. Journal of the National Cancer Institute, 2015, 107, djv077.                                                                                                             | 3.0          | 98        |

| #  | Article                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effective GTP-Replacing FtsZ Inhibitors and Antibacterial Mechanism of Action. ACS Chemical Biology, 2015, 10, 834-843.           | 1.6 | 25        |
| 38 | Synthetic Inhibitors of Bacterial Cell Division Targeting the GTP-Binding Site of FtsZ. ACS Chemical Biology, 2013, 8, 2072-2083. | 1.6 | 52        |
| 39 | New Synthetic Inhibitors of Fatty Acid Synthase with Anticancer Activity. Journal of Medicinal Chemistry, 2012, 55, 5013-5023.    | 2.9 | 57        |