M Luisa Iruela-Arispe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3856259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state. , 2022, 1, 67-84.		17
2	Recalibrating vascular malformations and mechanotransduction by pharmacological intervention. Journal of Clinical Investigation, 2022, 132, .	3.9	4
3	Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature, 2022, 604, 534-540.	13.7	88
4	Transcriptional Evaluation of the Ductus Arteriosus at the Single-Cell Level Uncovers a Requirement for Vim (Vimentin) for Complete Closure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 732-742.	1.1	10
5	Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317395.	1.1	4
6	Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application to Regenerative Medicine. American Journal of Pathology, 2021, 191, 52-65.	1.9	76
7	A High-Content Screen Identifies Drugs That Restrict Tumor Cell Extravasation across the Endothelial Barrier. Cancer Research, 2021, 81, 619-633.	0.4	8
8	Editorial: New technological developments and their impact in vascular research. Current Opinion in Hematology, 2021, 28, 177-178.	1.2	0
9	Single-cell RNA sequencing to study vascular diversity and function. Current Opinion in Hematology, 2021, 28, 221-229.	1.2	4
10	The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nature Immunology, 2021, 22, 839-850.	7.0	60
11	An inflammatory clock for healthy aging. Nature Aging, 2021, 1, 574-575.	5.3	1
12	Mapping Cell Viability Quantitatively and Independently From Cell Density in 3D Gels Noninvasively. IEEE Transactions on Biomedical Engineering, 2021, 68, 2940-2947.	2.5	0
13	The many flavors of monocyte/macrophageendothelial cell interactions. Current Opinion in Hematology, 2020, 27, 181-189.	1.2	28
14	Generation of human induced pluripotent stem cells (NIHTVBi004-A, NIHTVBi005-A, NIHTVBi006-A,) Tj ETQq0 0 45, 101821.	0 rgBT /Ov 0.3	verlock 10 Tf 5 1
15	Noninvasive Quantification of Cell Density in Three-Dimensional Gels by MRI. IEEE Transactions on Biomedical Engineering, 2019, 66, 821-830.	2.5	3
16	Expression of Concern for Lee et al., "Overexpression of Kinase-Associated Phosphatase (KAP) in Breast and Prostate Cancer and Inhibition of the Transformed Phenotype by Antisense KAP Expression― Molecular and Cellular Biology, 2019, 39, .	1.1	0
17	Angiopoietin-2 predicts morbidity in adults with Fontan physiology. Scientific Reports, 2019, 9, 18328.	1.6	11
18	Emerging molecular mechanisms of vascular dementia. Current Opinion in Hematology, 2019, 26, 199-206	1.2	32

#	Article	IF	CITATIONS
19	A focus on vascular malformations. Current Opinion in Hematology, 2019, 26, 152-153.	1.2	Ο
20	Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nature Cell Biology, 2019, 21, 190-202.	4.6	384
21	Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nature Communications, 2018, 9, 754.	5.8	94
22	GKAP Acts as a Genetic Modulator of NMDAR Signaling to Govern Invasive Tumor Growth. Cancer Cell, 2018, 33, 736-751.e5.	7.7	53
23	A multi-step transcriptional cascade underlies vascular regeneration in vivo. Scientific Reports, 2018, 8, 5430.	1.6	11
24	Metastasis of Circulating Tumor Cells: Speed Matters. Developmental Cell, 2018, 45, 3-5.	3.1	22
25	A Forward Genetic Screen Targeting the Endothelium Reveals a Regulatory Role for the Lipid Kinase Pi4ka in Myelo- and Erythropoiesis. Cell Reports, 2018, 22, 1211-1224.	2.9	13
26	<i>NRP1</i> haploinsufficiency predisposes to the development of Tetralogy of Fallot. American Journal of Medical Genetics, Part A, 2018, 176, 649-656.	0.7	4
27	Endothelial permeability, LDL deposition, and cardiovascular risk factors—a review. Cardiovascular Research, 2018, 114, 35-52.	1.8	208
28	NOTCH regulation of the endothelial cell phenotype. Current Opinion in Hematology, 2018, 25, 212-218.	1.2	118
29	Combined effects of bone morphogenetic protein 10 and crossveinlessâ€2 on cardiomyocyte differentiation in mouse adipocyteâ€derived stem cells. Journal of Cellular Physiology, 2018, 233, 1812-1822.	2.0	9
30	HIF-1α Deletion in the Endothelium, but Not in the Epithelium, Protects From Radiation-Induced Enteritis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 15-30.	2.3	31
31	A dual origin for blood vessels. Nature, 2018, 562, 195-197.	13.7	8
32	Pumping blood with self-reliance and cooperation. Journal of Experimental Medicine, 2018, 215, 2480-2482.	4.2	1
33	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
34	Mapping Metabolism: Monitoring Lactate Dehydrogenase Activity Directly in Tissue. Journal of Visualized Experiments, 2018, , .	0.2	9
35	Endothelial Regeneration of Large Vessels Is a Biphasic Process Driven by Local Cells with Distinct Proliferative Capacities. Cell Stem Cell, 2018, 23, 210-225.e6.	5.2	147
36	Vav3-induced cytoskeletal dynamics contribute to heterotypic properties of endothelial barriers. Journal of Cell Biology, 2018, 217, 2813-2830.	2.3	22

#	Article	IF	CITATIONS
37	Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Scientific Reports, 2018, 8, 9032.	1.6	31
38	VEGF., 2018, , 5915-5920.		0
39	4-D Flow Control in Porous Scaffolds: Toward a Next Generation of Bioreactors. IEEE Transactions on Biomedical Engineering, 2017, 64, 61-69.	2.5	3
40	Cardiac myocyte p38α kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. Journal of Biological Chemistry, 2017, 292, 12787-12800.	1.6	25
41	NOTCH1 is a mechanosensor in adult arteries. Nature Communications, 2017, 8, 1620.	5.8	205
42	Transgenic tomatoes expressing the 6F peptide and ezetimibe prevent diet-induced increases of IFN-β and cholesterol 25-hydroxylase in jejunum. Journal of Lipid Research, 2017, 58, 1636-1647.	2.0	13
43	Membrane lipids and cell signaling. Current Opinion in Lipidology, 2017, 28, 408-413.	1.2	171
44	Endothelial Hey2 deletion reduces endothelial-to-mesenchymal transition and mitigates radiation proctitis in mice. Scientific Reports, 2017, 7, 4933.	1.6	24
45	VEGF. , 2017, , 1-7.		Ο
46	Cross-talk between signaling and metabolism in the vasculature. Vascular Pharmacology, 2016, 83, 4-9.	1.0	17
47	Perivascular Macrophages Limit Permeability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2203-2212.	1.1	97
48	Reproducible Arterial Denudation Injury by Infrarenal Abdominal Aortic Clamping in a Murine Model. Journal of Visualized Experiments, 2016, , .	0.2	4
49	Notch, lipids, and endothelial cells. Current Opinion in Lipidology, 2016, 27, 513-520.	1.2	27
50	Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy. JCI Insight, 2016, 1, e88843.	2.3	29
51	Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice. PLoS ONE, 2016, 11, e0167936.	1.1	23
52	In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury. Scientific Reports, 2015, 5, 15738.	1.6	45
53	Blockade of Specific NOTCH Ligands: A New Promising Approach in Cancer Therapy. Cancer Discovery, 2015, 5, 112-114.	7.7	29
54	State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization. Circulation Research, 2015, 116, e99-132.	2.0	113

M Luisa Iruela-Arispe

#	Article	IF	CITATIONS
55	ADAMTS proteases in vascular biology. Matrix Biology, 2015, 44-46, 38-45.	1.5	57
56	Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. Journal of Cell Science, 2015, 128, 2236-2248.	1.2	156
57	Endothelial RhoGEFs: A systematic analysis of their expression profiles in VEGF-stimulated and tumor endothelial cells. Vascular Pharmacology, 2015, 74, 60-72.	1.0	43
58	Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer. Cancer Research, 2015, 75, 4742-4752.	0.4	96
59	Healing arterial ulcers: Endothelial lining regeneration upon vascular denudation injury. Vascular Pharmacology, 2015, 72, 9-15.	1.0	21
60	Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. Journal of Experimental Medicine, 2015, 212, 2147-2163.	4.2	86
61	Canonical and Noncanonical Vascular Endothelial Growth Factor Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 30-39.	1.1	55
62	Repression of Sox9 by Jag1 Is Continuously Required to Suppress the Default Chondrogenic Fate of Vascular Smooth Muscle Cells. Developmental Cell, 2014, 31, 707-721.	3.1	65
63	A Ligand-Independent VEGFR2 Signaling Pathway Limits Angiogenic Responses in Diabetes. Science Signaling, 2014, 7, ra1.	1.6	113
64	Local acting S tickyâ€ŧrap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Molecular Medicine, 2014, 6, 604-623.	3.3	16
65	Hybrid Photopatterned Enzymatic Reaction (HyPER) for in Situ Cell Manipulation. ChemBioChem, 2014, 15, 233-242.	1.3	26
66	Podosome rosettes precede vascular sprouts in tumour angiogenesis. Nature Cell Biology, 2014, 16, 928-930.	4.6	8
67	Stealing VEGF from Thy Neighbor. Cell, 2014, 159, 473-474.	13.5	7
68	The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis, 2014, 17, 779-804.	3.7	334
69	Progesterone Receptor in the Vascular Endothelium Triggers Physiological Uterine Permeability Preimplantation. Cell, 2014, 156, 549-562.	13.5	62
70	Selective suppression of endothelial cytokine production by progesterone receptor. Vascular Pharmacology, 2013, 59, 36-43.	1.0	27
71	Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Experimental Cell Research, 2013, 319, 1626-1634.	1.2	85
72	Tubulogenesis. Development (Cambridge), 2013, 140, 2851-2855.	1.2	91

M Luisa Iruela-Arispe

#	Article	IF	CITATIONS
73	The mouse retina in 3D: quantification of vascular growth and remodeling. Integrative Biology (United Kingdom), 2013, 5, 1426-1438.	0.6	49
74	Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models. Development (Cambridge), 2013, 140, 1720-1729.	1.2	60
75	Real-time maps of fluid flow fields in porous biomaterials. Biomaterials, 2013, 34, 1980-1986.	5.7	11
76	Sox17 is indispensable for acquisition and maintenance of arterial identity. Nature Communications, 2013, 4, 2609.	5.8	232
77	β1-Integrin Is Essential for Vasoregulation and Smooth Muscle Survival In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2325-2335.	1.1	21
78	Progesterone Receptor Signaling in the Microenvironment of Endometrial Cancer Influences Its Response to Hormonal Therapy. Cancer Research, 2013, 73, 4697-4710.	0.4	55
79	Testosterone Levels Influence Mouse Fetal Leydig Cell Progenitors Through Notch Signaling1. Biology of Reproduction, 2013, 88, 91.	1.2	64
80	Notch1 regulates angio-supportive bone marrow–derived cells in mice: relevance to chemoresistance. Blood, 2013, 122, 143-153.	0.6	25
81	Cellular and molecular regulation of vascular permeability. Thrombosis and Haemostasis, 2013, 109, 407-415.	1.8	124
82	Recent advances in vascular development. Current Opinion in Hematology, 2012, 19, 176-183.	1.2	22
83	Endothelial deletion of murine <i>Jag1</i> leads to valve calcification and congenital heart defects associated with Alagille syndrome. Development (Cambridge), 2012, 139, 4449-4460.	1.2	96
84	Notch promotes vascular maturation by inducing integrin-mediated smooth muscle cell adhesion to the endothelial basement membrane. Blood, 2012, 119, 2149-2158.	0.6	124
85	Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood, 2012, 120, 3152-3162.	0.6	152
86	ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nature Medicine, 2012, 18, 967-973.	15.2	105
87	Trophoblasts Regulate the Placental Hematopoietic Niche through PDGF-B Signaling. Developmental Cell, 2012, 22, 651-659.	3.1	47
88	CCN2/Connective Tissue Growth Factor Is Essential for Pericyte Adhesion and Endothelial Basement Membrane Formation during Angiogenesis. PLoS ONE, 2012, 7, e30562.	1.1	114
89	Selective Decline of Synaptic Protein Levels in the Frontal Cortex of Female Mice Deficient in the Extracellular Metalloproteinase ADAMTS1. PLoS ONE, 2012, 7, e47226.	1.1	20
90	An essential requirement for β1 integrin in the assembly of extracellular matrix proteins within the vascular wall. Developmental Biology, 2012, 365, 23-35.	0.9	25

#	Article	IF	CITATIONS
91	Fibulinâ€1 is required during cardiac ventricular morphogenesis for versican cleavage, suppression of ErbB2 and Erk1/2 activation, and to attenuate trabecular cardiomyocyte proliferation. Developmental Dynamics, 2012, 241, 303-314.	0.8	34
92	VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF. Integrative Biology (United Kingdom), 2011, 3, 887.	0.6	46
93	LUMENating Blood Vessels. Developmental Cell, 2011, 20, 412-414.	3.1	3
94	Molecular Mechanisms of Tumor Angiogenesis. Genes and Cancer, 2011, 2, 1085-1096.	0.6	170
95	Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 2010, 115, 1461-1471.	0.6	316
96	Vascular remodeling of the vitelline artery initiates extravascular emergence of hematopoietic clusters. Blood, 2010, 116, 3435-3444.	0.6	68
97	When Cre-Mediated Recombination in Mice Does Not Result in Protein Loss. Genetics, 2010, 186, 959-967.	1.2	24
98	Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. Journal of Cell Biology, 2010, 188, 595-609.	2.3	279
99	Variable Inhibition of Thrombospondin 1 against Liver and Lung Metastases through Differential Activation of Metalloproteinase ADAMTS1. Cancer Research, 2010, 70, 948-956.	0.4	57
100	Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development (Cambridge), 2010, 137, 4061-4072.	1.2	207
101	Mechanisms Underlying Context-Dependent VEGF Signaling For Distinct Biological Responses. , 2010, , 1919-1925.		0
102	Extracellular matrix, inflammation, and the angiogenic response. Cardiovascular Research, 2010, 86, 226-235.	1.8	263
103	β1 Integrin Establishes Endothelial Cell Polarity and Arteriolar Lumen Formation via a Par3-Dependent Mechanism. Developmental Cell, 2010, 18, 39-51.	3.1	233
104	The Wnt/β-Catenin Pathway Modulates Vascular Remodeling and Specification by Upregulating Dll4/Notch Signaling. Developmental Cell, 2010, 18, 938-949.	3.1	274
105	Endothelial α3β1-Integrin Represses Pathological Angiogenesis and Sustains Endothelial-VEGF. American Journal of Pathology, 2010, 177, 1534-1548.	1.9	54
106	Signaling circuitry in vascular morphogenesis. Current Opinion in Hematology, 2010, 17, 1.	1.2	28
107	Contribution of ADAMs and ADAMTSs to Tumor Expansion and Metastasis. , 2010, , 293-314.		1
108	The phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) by engineered surfaces with electrostatically or covalently immobilized VEGF. Biomaterials, 2009, 30, 4618-4628.	5.7	83

#	Article	IF	CITATIONS
109	Cellular and Molecular Mechanisms of Vascular Lumen Formation. Developmental Cell, 2009, 16, 222-231.	3.1	334
110	Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. International Journal of Biochemistry and Cell Biology, 2009, 41, 800-810.	1.2	72
111	Conditional Cre/LoxP strategies for the study of hematopoietic stem cell formation. Blood Cells, Molecules, and Diseases, 2009, 43, 6-11.	0.6	14
112	Time to Cut the Cord: Placental HSCs Grow Up. Cell Stem Cell, 2009, 5, 351-352.	5.2	2
113	Endothelial Cell Activation. , 2008, , 35-43.		2
114	Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature, 2008, 453, 529-533.	13.7	223
115	Fate Tracing Reveals the Endothelial Origin of Hematopoietic Stem Cells. Cell Stem Cell, 2008, 3, 625-636.	5.2	600
116	Endocardial Brg1 Represses ADAMTS1 to Maintain the Microenvironment for Myocardial Morphogenesis. Developmental Cell, 2008, 14, 298-311.	3.1	232
117	Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14082-14087.	3.3	453
118	Regulation of Thrombospondin1 by Extracellular Proteases. Current Drug Targets, 2008, 9, 863-868.	1.0	23
119	Thrombospondins and Angiogenesis. , 2008, , 233-245.		0
120	Notch Signaling in Blood Vessels. Circulation Research, 2007, 100, 1556-1568.	2.0	208
121	Vascular Abnormalities in Mice Deficient for the G Protein-Coupled Receptor GPR4 That Functions as a pH Sensor. Molecular and Cellular Biology, 2007, 27, 1334-1347.	1.1	114
122	Autocrine VEGF Signaling Is Required for Vascular Homeostasis. Cell, 2007, 130, 691-703.	13.5	902
123	Modulation of protein delivery from modular polymer scaffolds. Biomaterials, 2007, 28, 1862-1870.	5.7	70
124	Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007, 445, 776-780.	13.7	1,515
125	Notch expression patterns in the retina: An eye on receptor–ligand distribution during angiogenesis. Gene Expression Patterns, 2007, 7, 461-470.	0.3	96
126	Signaling pathways that regulate vascular lumen formation. FASEB Journal, 2007, 21, A133.	0.2	0

#	Article	IF	CITATIONS
127	When It Comes to Blocking Lymphatics, It Is All a Question of Time. American Journal of Pathology, 2006, 169, 347-350.	1.9	1
128	The Ever-Elusive Endothelial Progenitor Cell: Identities, Functions and Clinical Implications. Pediatric Research, 2006, 59, 26R-32R.	1.1	71
129	ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO Journal, 2006, 25, 5270-5283.	3.5	195
130	VE-Cadherin-Cre-recombinase transgenic mouse: A tool for lineage analysis and gene deletion in endothelial cells. Developmental Dynamics, 2006, 235, 759-767.	0.8	391
131	Proteolytic cleavage of versican during cardiac cushion morphogenesis. Developmental Dynamics, 2006, 235, 2238-2247.	0.8	105
132	VE-cadherin-CreERT2transgenic mouse: A model for inducible recombination in the endothelium. Developmental Dynamics, 2006, 235, 3413-3422.	0.8	206
133	Generation of a mouse for conditional excision of progesterone receptor. Genesis, 2006, 44, 391-395.	0.8	20
134	My O'Myeloid, a tale of two lineages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12959-12960.	3.3	5
135	Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell, 2005, 8, 485.	7.7	0
136	Enhanced inhibition of murine tumor and human breast tumor xenografts using targeted delivery of an antibody-endostatin fusion protein. Molecular Cancer Therapeutics, 2005, 4, 956-967.	1.9	37
137	ADAMTS1 Proteinase Is Up-regulated in Wounded Skin and Regulates Migration of Fibroblasts and Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 23844-23852.	1.6	65
138	Fibulin-1 Acts as a Cofactor for the Matrix Metalloprotease ADAMTS-1. Journal of Biological Chemistry, 2005, 280, 34796-34804.	1.6	88
139	Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. Journal of Cell Biology, 2005, 169, 681-691.	2.3	653
140	α 4 β 1 Integrin Mediates Selective Endothelial Cell Responses to Thrombospondins 1 and 2 In Vitro and Modulates Angiogenesis In Vivo. Circulation Research, 2004, 94, 462-470.	2.0	93
141	Whence Thrombospondin?. Cancer Biology and Therapy, 2004, 3, 406-407.	1.5	3
142	Thrombospondin modules and angiogenesis. International Journal of Biochemistry and Cell Biology, 2004, 36, 1070-1078.	1.2	105
143	Notch signaling in vascular morphogenesis. Current Opinion in Hematology, 2004, 11, 278-283.	1.2	94
144	Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell, 2003, 4, 223-238.	7.7	709

#	Article	IF	CITATIONS
145	ADAMTS1: A Matrix Metalloprotease with Angioinhibitory Properties. Annals of the New York Academy of Sciences, 2003, 995, 183-190.	1.8	100
146	Selective Binding of Lectins to Embryonic Chicken Vasculature. Journal of Histochemistry and Cytochemistry, 2003, 51, 597-604.	1.3	73
147	ADAMTS1/METH1 Inhibits Endothelial Cell Proliferation by Direct Binding and Sequestration of VEGF165. Journal of Biological Chemistry, 2003, 278, 23656-23665.	1.6	224
148	Opposing Functions of the Ets Factors NERF and ELF-1 During Chicken Blood Vessel Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1106-1112.	1.1	20
149	ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochemical and Biophysical Research Communications, 2002, 293, 501-508.	1.0	216
150	Expression of ADAMTS1 during murine development. Mechanisms of Development, 2002, 115, 181-185.	1.7	62
151	Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nature Medicine, 2002, 8, 891-896.	15.2	170
152	Vascular Repair After Menstruation Involves Regulation of Vascular Endothelial Growth Factor-Receptor Phosphorylation by sFLT-1. American Journal of Pathology, 2001, 158, 1399-1410.	1.9	56
153	Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mechanisms of Development, 2001, 108, 161-164.	1.7	387
154	Versican V1 Proteolysis in Human Aorta in Vivo Occurs at the Glu441-Ala442 Bond, a Site That Is Cleaved by Recombinant ADAMTS-1 and ADAMTS-4. Journal of Biological Chemistry, 2001, 276, 13372-13378.	1.6	402
155	Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12485-12490.	3.3	445
156	Vascular Morphogenesis in the Mammary Gland: Introduction and Overview. , 2001, , 3-24.		1
157	Regulation of VEGF and VEGF receptor expression in the rodent mammary gland during pregnancy, lactation, and involution. Developmental Dynamics, 2000, 218, 507-524.	0.8	63
158	Endogenous regulators of angiogenesisemphasis on proteins with thrombospondin–type I motifs. Cancer and Metastasis Reviews, 2000, 19, 159-165.	2.7	43
159	Cell Contact–dependent Activation of α3β1 Integrin Modulates Endothelial Cell Responses to Thrombospondin-1. Molecular Biology of the Cell, 2000, 11, 2885-2900.	0.9	143
160	Overexpression of Kinase-Associated Phosphatase (KAP) in Breast and Prostate Cancer and Inhibition of the Transformed Phenotype by Antisense KAP Expression. Molecular and Cellular Biology, 2000, 20, 1723-1732.	1.1	76
161	Characterization of METH-1/ADAMTS1 Processing Reveals Two Distinct Active Forms. Journal of Biological Chemistry, 2000, 275, 33471-33479.	1.6	131
162	METH-1, a Human Ortholog of ADAMTS-1, and METH-2 Are Members of a New Family of Proteins with Angio-inhibitory Activity. Journal of Biological Chemistry, 1999, 274, 23349-23357.	1.6	371

#	Article	IF	CITATIONS
163	Inhibition of Angiogenesis by Thrombospondin-1 Is Mediated by 2 Independent Regions Within the Type 1 Repeats. Circulation, 1999, 100, 1423-1431.	1.6	301
164	Progesterone Regulates Proliferation of Endothelial Cells. Journal of Biological Chemistry, 1999, 274, 2185-2192.	1.6	120
165	Antiangiogenic Domains Shared by Thrombospondins and Metallospondins, a New Family of Angiogenic Inhibitors. Annals of the New York Academy of Sciences, 1999, 886, 58-66.	1.8	33
166	Endometrial Endothelial Cells Express Estrogen and Progesterone Receptors and Exhibit a Tissue Specific Response to Angiogenic Growth Factors. Microcirculation, 1999, 6, 127-140.	1.0	75
167	Endometrial Endothelial Cells Express Estrogen and Progesterone Receptors and Exhibit a Tissue Specific Response to Angiogenic Growth Factors. Microcirculation, 1999, 6, 127-140.	1.0	52
168	Proliferation and differentiation of smooth muscle cell precursors occurs simultaneously during the development of the vessel wall. , 1997, 209, 342-352.		42
169	Type I collagen-deficient Mov-13 mice do not retain SPARC in the extracellular matrix: Implications for fibroblast function. Developmental Dynamics, 1996, 207, 171-183.	0.8	53
170	Organized type I collagen influences endothelial patterns during "spontaneous angiogenesis in vitro― Planar cultures as models of vascular development. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 120-131.	0.7	131
171	PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors Journal of Cell Biology, 1994, 125, 917-928.	2.3	384
172	Differential expression of thrombospondin 1, 2, and 3 during murine development. Developmental Dynamics, 1993, 197, 40-56.	0.8	206
173	Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-β1. Journal of Cellular Biochemistry, 1993, 52, 414-430.	1.2	106
174	Molecular analysis of chicken embryo SPARC (osteonectin). FEBS Journal, 1993, 218, 117-127.	0.2	33
175	The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1281-1285.	3.3	338
176	Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5