List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3855809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Next-Generation Sequencing Technology to Explore Genetic Pathways in Endophytic Fungi in the Syntheses of Plant Bioactive Metabolites. Agriculture (Switzerland), 2022, 12, 187.	3.1	12
2	Antiviral Property of the Fungal Metabolite 3-O-Methylfunicone in Bovine Herpesvirus 1 Infection. Microorganisms, 2022, 10, 188.	3.6	10
3	Ecological and Molecular Interactions between Insects and Fungi. Microorganisms, 2022, 10, 96.	3.6	12
4	Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+). Molecules, 2022, 27, 1959.	3.8	3
5	Secondary Metabolites, including a New 5,6-Dihydropyran-2-One, Produced by the Fungus Diplodia corticola. Aphicidal Activity of the Main Metabolite, Sphaeropsidin A. Molecules, 2022, 27, 2327.	3.8	6
6	Talaromyces–Insect Relationships. Microorganisms, 2022, 10, 45.	3.6	14
7	Essential Oils in Citrus Fruit Ripening and Postharvest Quality. Horticulturae, 2022, 8, 396.	2.8	6
8	New Insights into Chemical and Biological Properties of Funicone-like Compounds. Toxins, 2022, 14, 466.	3.4	5
9	Antitumor and Immunomodulatory Compounds from Fungi. , 2021, , 683-709.		3
10	Coordination Properties of the Fungal Metabolite Harzianic Acid Toward Toxic Heavy Metals. Toxics, 2021, 9, 19.	3.7	12
11	The need for a coordinated action to elucidate ecological occurrence and functions of endophytic fungal communities. Folia Horticulturae, 2021, 33, 1-7.	1.8	2
12	New Cladosporium Species from Normal and Galled Flowers of Lamiaceae. Pathogens, 2021, 10, 369.	2.8	11
13	Endophytic Fungi and Ecological Fitness of Chestnuts. Plants, 2021, 10, 542.	3.5	11
14	The Genus Cladosporium: A Rich Source of Diverse and Bioactive Natural Compounds. Molecules, 2021, 26, 3959.	3.8	43
15	Mitidjospirone, a new spirodioxynaphthalene and GC-MS screening of secondary metabolites produced by strains of Lasiodiplodia mitidjana associated to Citrus sinensis dieback. Natural Product Research, 2021, , 1-10.	1.8	3
16	Cryptic Diversity in Cladosporium cladosporioides Resulting from Sequence-Based Species Delimitation Analyses. Pathogens, 2021, 10, 1167.	2.8	7
17	An Integrative Study on Asphondylia spp. (Diptera: Cecidomyiidae), Causing Flower Galls on Lamiaceae, with Description, Phenology, and Associated Fungi of Two New Species. Insects, 2021, 12, 958.	2.2	5
18	Occurrence and Functions of Endophytic Fungi in Crop Species. Agriculture (Switzerland), 2021, 11, 18.	3.1	1

#	Article	IF	CITATIONS
19	Bioactive Products from Endophytic Fungi of Sages (Salvia spp.). Agriculture (Switzerland), 2020, 10, 543.	3.1	15
20	Endophytic Fungi of Olive Tree. Microorganisms, 2020, 8, 1321.	3.6	25
21	The Thin Line between Pathogenicity and Endophytism: The Case of Lasiodiplodia theobromae. Agriculture (Switzerland), 2020, 10, 488.	3.1	33
22	Endophytism of Lecanicillium and Akanthomyces. Agriculture (Switzerland), 2020, 10, 205.	3.1	30
23	Bivalent Metal-Chelating Properties of Harzianic Acid Produced by Trichoderma pleuroticola Associated to the Gastropod Melarhaphe neritoides. Molecules, 2020, 25, 2147.	3.8	15
24	Phylogenetic Characterization of Botryosphaeria Strains Associated with Asphondylia Galls on Species of Lamiaceae. Diversity, 2020, 12, 41.	1.7	15
25	Identification of the Main Metabolites of a Marine-Derived Strain of Penicillium brevicompactum Using LC and GC MS Techniques. Metabolites, 2020, 10, 55.	2.9	12
26	Inhibitory effect of trichodermanone C, a sorbicillinoid produced by <i>Trichoderma citrinoviride</i> associated to the green alga <i>Cladophora</i> sp., on nitrite production in LPS-stimulated macrophages. Natural Product Research, 2019, 33, 3389-3397.	1.8	24
27	The Shifting Mycotoxin Profiles of Endophytic Fusarium Strains: A Case Study. Agriculture (Switzerland), 2019, 9, 143.	3.1	9
28	The Issue of Misidentification of Kojic Acid with Flufuran in Aspergillus flavus. Molecules, 2019, 24, 1709.	3.8	13
29	Endophytic Fungi of Citrus Plants. Agriculture (Switzerland), 2019, 9, 247.	3.1	12
30	Occurrence and Properties of Thiosilvatins. Marine Drugs, 2019, 17, 664.	4.6	11
31	Productivity, nutritional and functional qualities of perennial wall-rocket: Effects of pre-harvest factors. Folia Horticulturae, 2019, 31, 71-80.	1.8	6
32	A New Gall Midge Species of Asphondylia (Diptera: Cecidomyiidae) Inducing Flower Galls on Clinopodium nepeta (Lamiaceae) From Europe, Its Phenology, and Associated Fungi. Environmental Entomology, 2018, 47, 609-622.	1.4	9
33	Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves. Analytical and Bioanalytical Chemistry, 2018, 410, 3547-3557.	3.7	27
34	Crop Systems, Quality and Protection of Diplotaxis tenuifolia. Agriculture (Switzerland), 2018, 8, 55.	3.1	36
35	Structures and Bioactive Properties of Myrtucommulones and Related Acylphloroglucinols from Myrtaceae. Molecules, 2018, 23, 3370.	3.8	16
36	Bioactive Compounds from Marine-Derived Aspergillus, Penicillium, Talaromyces and Trichoderma Species. Marine Drugs, 2018, 16, 408.	4.6	31

#	Article	IF	CITATIONS
37	The Marine-Derived Filamentous Fungi in Biotechnology. Grand Challenges in Biology and Biotechnology, 2018, , 157-189.	2.4	32
38	Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Marine Drugs, 2018, 16, 12.	4.6	54
39	Talarodiolide, a New 12-Membered Macrodiolide, and GC/MS Investigation of Culture Filtrate and Mycelial Extracts of Talaromyces pinophilus. Molecules, 2018, 23, 950.	3.8	17
40	GC–MS approaches for the screening of metabolites produced by marine-derived Aspergillus. Marine Chemistry, 2018, 206, 19-33.	2.3	26
41	Secondary metabolites from the endophytic fungus <i>Talaromyces pinophilus</i> . Natural Product Research, 2017, 31, 1778-1785.	1.8	85
42	First report of the gall midge <i>Asphondylia serpylli</i> on thyme (<i>Thymus vulgaris</i>), and identification of the associated fungal symbiont. Annals of Applied Biology, 2017, 171, 89-94.	2.5	10
43	Co-Culture of Plant Beneficial Microbes as Source of Bioactive Metabolites. Scientific Reports, 2017, 7, 14330.	3.3	55
44	Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin. Marine Drugs, 2016, 14, 37.	4.6	111
45	Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta. Agriculture (Switzerland), 2015, 5, 918-970.	3.1	117
46	Structural and Bioactive Properties of 3-O-Methylfunicone. Mini-Reviews in Medicinal Chemistry, 2015, 14, 1043-1047.	2.4	12
47	Antitumor Metabolites of Fungi. Current Bioactive Compounds, 2015, 10, 207-244.	0.5	4
48	Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus) Tj ETQq0 0 () rgBT/Ove	erlock 10 Tf 50
49	Spectroscopic Characterization of a Pyridine Alkaloid from an Endophytic Strain of the Fusarium incarnatum-equiseti Species Complex. Current Bioactive Compounds, 2014, 10, 196-200.	0.5	1
50	Endophytism of Penicillium Species in Woody Plants. The Open Mycology Journal, 2014, 8, 1-26.	0.8	26
51	Patenting Penicillium Strains. Recent Patents on Biotechnology, 2012, 6, 81-96.	0.8	6
52	Cell-growth and migration inhibition of human mesothelioma cells induced by 3-O-Methylfunicone from Penicillium pinophilum and cisplatin. Investigational New Drugs, 2012, 30, 1343-1351.	2.6	16
53	3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells. Cell Proliferation, 2011, 44, 401-409.	5.3	19
54	3â€ <i>O</i> â€Methylfunicone, a metabolite produced by <i>Penicillium pinophilum</i> , modulates ERK1/2 activity, affecting cell motility of human mesothelioma cells. Cell Proliferation, 2010, 43, 114-123.	5.3	13

#	Article	IF	CITATIONS
55	Occurence and Bioactivities of Funicone-Related Compounds. International Journal of Molecular Sciences, 2009, 10, 1430-1444.	4.1	29
56	Artemisinin reduces human melanoma cell migration by down-regulating αVβ3 integrin and reducing metalloproteinase 2 production. Investigational New Drugs, 2009, 27, 412-418.	2.6	54
57	3â€ <i>O</i> â€methylfunicone, a metabolite of <i>Penicillium pinophilum</i> , inhibits proliferation of human melanoma cells by causing G ₂ Â+ÂM arrest and inducing apoptosis. Cell Proliferation, 2009, 42, 541-553.	5.3	19
58	First Report of Crown and Root Rot Caused by <i>Rhizoctonia solani</i> AC-4 on Orange Jessamine in Italy. Plant Disease, 2009, 93, 204-204.	1.4	3
59	First Report of Crown Rot, Stem Rot, and Root Rot Caused by Binucleate <i>Rhizoctonia</i> AG-G on <i>Viburnum tinus</i> in Italy. Plant Disease, 2009, 93, 433-433.	1.4	2
60	Bioprospecting for antagonistic Penicillium strains as a resource of new antitumor compounds. World Journal of Microbiology and Biotechnology, 2008, 24, 189-195.	3.6	19
61	Cytosporin-related compounds from the marine-derived fungus Eutypella scoparia. Tetrahedron, 2008, 64, 5365-5369.	1.9	53
62	First Report of Damping-Off Caused by <i>Rhizoctonia solani</i> AG-4 on <i>Lagunaria patersonii</i> in Italy. Plant Disease, 2008, 92, 836-836.	1.4	4
63	First Report of Damping-Off on African Daisy Caused by <i>Rhizoctonia solani</i> AG-4 in Italy. Plant Disease, 2008, 92, 1367-1367.	1.4	4
64	Distinction Between Penicillium canescens and Penicillium janczewskii by Means of Polygalacturonase and Esterase Isozyme Analysis. The Open Mycology Journal, 2008, 2, 100-104.	0.8	1
65	3-O-methylfunicone produced bypenicillium pinophilum affects cell motility of breast cancer cells, downregulating αvl²5 integrin and inhibiting metalloproteinase-9 secretion. Molecular Carcinogenesis, 2007, 46, 930-940.	2.7	27
66	Production and fungitoxic activity of Sch 642305, a secondary metabolite of Penicillium canescens. Mycopathologia, 2007, 163, 295-301.	3.1	51
67	First report of Rhizoctonia solani on Diplotaxis tenuifolia in Italy. Plant Pathology, 2004, 53, 811-811.	2.4	9
68	3-O-Methylfunicone, a secondary metabolite produced by Penicillium pinophilum, induces growth arrest and apoptosis in HeLa cells. Cell Proliferation, 2004, 37, 413-426.	5.3	22
69	Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycopathologia, 2004, 158, 465-474.	3.1	61
70	Occurrence of Cercospora insulana on statice (Limonium sinuatum) in Italy. Plant Pathology, 2003, 52, 418-418.	2.4	0
71	First Report of Web Blight on Yellow-Sage (Lantana camara) Caused by Rhizoctonia solani in Europe. Plant Disease, 2003, 87, 875-875.	1.4	4
72	First Report of a Blight Caused by Rhizoctonia solani on Anubias heterophylla in Italy. Plant Disease, 2003, 87, 1005-1005.	1.4	1

#	Article	IF	CITATIONS
73	Structure Elucidation of a Novel Funicone-Like Compound Produced by Penicillium Pinophilum. Natural Product Research, 2002, 16, 207-211.	0.4	5
74	Cytostatic Properties of a Novel Compound Derived from Penicillium pinophilum: An In Vitro Study. ATLA Alternatives To Laboratory Animals, 2002, 30, 69-75.	1.0	38
75	In vitro evaluation of fungal antagonists of Phytophthora nicotianae. Plant Protection Science, 2002, 38, 634-637.	1.4	1
76	3-o-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum. Phytochemistry, 1999, 52, 1399-1401.	2.9	46
77	Characterization of Rhizoctonia solani Isolates from Tobacco Fields Related to Anastomosis Groups 2-1 and BI (AG 2-1 and AG BI). Journal of Phytopathology, 1999, 147, 71-77.	1.0	10
78	Characterization of Rhizoctonia solani Isolates from Tobacco Fields Related to Anastomosis Groups 2-1 and BI (AG 2-1 and AG BI). Journal of Phytopathology, 1999, 147, 71-77.	1.0	23
79	Anastomosis Groups and Pathogenicity of Rhizoctonia Solani Isolates From Tobacco in Italy. Developments in Plant Pathology, 1997, , 325-327.	0.1	0
80	Recovery ofRhizoctonia solaniAC-5 from Tobacco in Italy. Plant Disease, 1995, 79, 540.	1.4	7
81	Defensive Mutualism of Endophytic Fungi: Effects of Sphaeropsidin A against a Model Lepidopteran Pest. , 0, , .		2