Rafael Escribano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3855550/publications.pdf

Version: 2024-02-01

66 papers

1,444 citations

331670 21 h-index 35 g-index

67 all docs

67 docs citations

67 times ranked

1758 citing authors

#	Article	IF	CITATIONS
1	On the spectral features of dangling bonds in CH ₄ /H ₂ O amorphous ice mixtures. Physical Chemistry Chemical Physics, 2021, 23, 9532-9538.	2.8	6
2	Density and porosity of amorphous water ice by DFT methods. Chemical Physics Letters, 2020, 745, 137222.	2.6	3
3	Prediction of the near-IR spectra of ices by ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2019, 21, 9433-9440.	2.8	2
4	Perceptions of ecological and aesthetic quality by natural resource professionals and local people. A qualitative exploration in a mountainous landscape (La Rioja, Spain). Landscape Research, 2019, 44, 241-255.	1.6	10
5	Simulations and spectra of water in CO matrices. Physical Chemistry Chemical Physics, 2017, 19, 7280-7287.	2.8	1
6	Vibrational spectra and physico-chemical properties of astrophysical analogs. Physical Chemistry Chemical Physics, 2017, 19, 26582-26588.	2.8	4
7	Physical and spectroscopic properties of pure C ₂ H ₄ and CH ₄ :C ₂ H ₄ ices. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1894-1902.	4.4	13
8	OPTICAL CONSTANTS AND BAND STRENGTHS OF CH ₄ :C ₂ H ₆ ICES IN THE NEAR- AND MID-INFRARED. Astrophysical Journal, 2016, 825, 156.	4.5	15
9	Theoretical model of the interaction of glycine with hydrogenated amorphous carbon (HAC). Physical Chemistry Chemical Physics, 2015, 17, 28966-28976.	2.8	6
10	Hydration of HNO3–HOCl clusters: Bonding properties. Computational and Theoretical Chemistry, 2014, 1038, 71-77.	2.5	2
11	The formation of carbamate ions in interstellar ice analogues. Physical Chemistry Chemical Physics, 2014, 16, 3371-3380.	2.8	18
12	On the infrared activation of the breathing mode of methane in ice. Physical Chemistry Chemical Physics, 2014, 16, 16694-16700.	2.8	11
13	Stability of carbonaceous dust analogues and glycine under UV irradiation and electron bombardment. Faraday Discussions, 2014, 168, 267-285.	3.2	27
14	Predicting the infrared band profiles for CO2 cloud particles on Mars. Icarus, 2013, 223, 591-601.	2.5	11
15	OPTICAL CONSTANTS OF NH ₃ AND NH ₃ :N ₂ AMORPHOUS ICES IN THE NEAR-INFRARED AND MID-INFRARED REGIONS. Astrophysical Journal, 2013, 777, 26.	4.5	23
16	Visual significance as a factor influencing perceived risks: cost-effectiveness analysis for overhead high-voltage power-line redesign. Impact Assessment and Project Appraisal, 2013, 31, 291-304.	1.8	7
17	Crystallization of CO ₂ ice and the absence of amorphous CO ₂ ice in space. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12899-12904.	7.1	53
18	CYANATE ION IN COMPACT AMORPHOUS WATER ICE. Astrophysical Journal, 2012, 759, 90.	4.5	7

#	Article	IF	Citations
19	Ice structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 2012, 84, 885-944.	45.6	277
20	Solid L- \hat{l} ±-alanine: Spectroscopic properties and theoretical calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1266-1275.	2.3	14
21	An infrared study of solid glycine in environments of astrophysical relevance. Physical Chemistry Chemical Physics, 2011, 13, 12268.	2.8	43
22	Proton transfer and autoionization in HNO3·HCl·(H2O)n particles. Physical Chemistry Chemical Physics, 2011, 13, 18145.	2.8	6
23	Spectroscopic investigation of nitric acid monohydrate. Molecular Physics, 2011, 109, 2083-2093.	1.7	1
24	HDO INFRARED DETECTION SENSITIVITY AND D/H ISOTOPIC EXCHANGE IN AMORPHOUS AND CRYSTALLINE ICE. Astrophysical Journal, 2011, 738, 133.	4.5	14
25	AMMONIUM AND FORMATE IONS IN INTERSTELLAR ICE ANALOGS. Astrophysical Journal, 2010, 724, 539-545.	4.5	32
26	Interaction of CH4 and H2O in ice mixtures. Physical Chemistry Chemical Physics, 2010, 12, 3164.	2.8	38
27	INFRARED SPECTRA AND THERMODYNAMIC PROPERTIES OF CO ₂ /METHANOL ICES. Astrophysical Journal, 2009, 690, 486-495.	4.5	25
28	Theoretical Study on Hydrogenâ€Bond Effects in IR Spectra of High―and Lowâ€Temperature Phases of Nitric Acid Dihydrate. ChemPhysChem, 2009, 10, 3229-3238.	2.1	2
29	Phases of Solid Methanol. Journal of Physical Chemistry A, 2009, 113, 3321-3329.	2.5	34
30	SPECTROSCOPIC EFFECTS IN CH ₄ /H ₂ O ICES. Astrophysical Journal, 2009, 703, 2101-2107.	4.5	28
31	Trapping and adsorption of CO2 in amorphous ice: A FTIR study. Icarus, 2008, 197, 599-605.	2.5	34
32	Ices of CO ₂ /H ₂ O Mixtures. Reflectionâ^Absorption IR Spectroscopy and Theoretical Calculations. Journal of Physical Chemistry A, 2008, 112, 457-465.	2.5	21
33	The low-frequency Raman and IR spectra of nitric acid hydrates. Vibrational Spectroscopy, 2007, 43, 254-259.	2.2	11
34	Orientation Effects on Nitric Acid Dihydrate Films. Journal of Physical Chemistry B, 2006, 110, 7396-7401.	2.6	9
35	Nineteenth colloquium on high resolution molecular spectroscopy Salamanca 11–16 September 2005. Molecular Physics, 2006, 104, 2579-2580.	1.7	2
36	Vibrational spectra of crystalline hydrates of atmospheric relevance: Bands of hydrated protons. Chemical Physics Letters, 2006, 427, 300-304.	2.6	24

#	Article	IF	CITATIONS
37	Comment on "Theoretical investigation of the coexistence of α and β-nitric acid trihydrates (NAT) molecular conformations―[Chem. Phys. 324 (2006) 210]. Chemical Physics, 2006, 331, 186-188.	1.9	2
38	On the use of wavelet filtering and correlation techniques in atmospheric condensed phase spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 1759-1766.	3.9	3
39	The structure and vibrational frequencies of crystalline HCl trihydrate. Journal of Molecular Structure, 2005, 742, 147-152.	3.6	16
40	The ν19a band of fluorobenzene. Journal of Molecular Spectroscopy, 2004, 223, 80-83.	1.2	6
41	The HCl hexahydrate: RAIR spectra and theoretical investigation. Chemical Physics Letters, 2004, 396, 335-340.	2.6	14
42	Investigation of orientation effects in films of nitric acid trihydrate. Physical Chemistry Chemical Physics, 2004, 6, 4047-4055.	2.8	10
43	The BrÂ $-$ O bond in halogen oxides Â $-$ Empirical force constants and electronic characteristics. Canadian Journal of Chemistry, 2004, 82, 998-1005.	1.1	2
44	First-Principles Infrared Spectrum of Nitric Acid and Nitric Acid Monohydrate Crystals. Journal of Physical Chemistry A, 2004, 108, 10535-10541.	2.5	41
45	The structure and vibrational frequencies of crystalline nitric acid. Chemical Physics Letters, 2003, 378, 218-223.	2.6	26
46	A Theoretical Study of the Structure and Spectra of Nitric Acid Hydrates Crystals. Journal of Physical Chemistry B, 2003, 107, 10608-10614.	2.6	27
47	Experimental Studies of Amorphous and Polycrystalline Ice Films Using FT-RAIRS. Journal of Physical Chemistry B, 2003, 107, 11098-11108.	2.6	46
48	Fringe-field effects on the time evolution of pendular states. Physical Review A, 2000, 62, .	2.5	13
49	Structure and Spectra of HOCl(H2O)nClusters,n= 1â^'4:Â A Theoretical Calculation. Journal of Physical Chemistry A, 2000, 104, 600-609.	2.5	18
50	Room temperature absorption spectroscopy of GeH2 near 585 nm. Chemical Physics Letters, 1999, 315, 397-404.	2.6	19
51	The Stimulated Raman Spectrum of Symmetric13C Cyanogen,13C2N2. Journal of Molecular Spectroscopy, 1999, 193, 174-182.	1.2	4
52	The [ITAL]ISO[/ITAL]/SWS Spectrum of IRC +10216: The Vibrational Bands of C[TINF]2[/TINF]H[TINF]2[/TINF] and HCN. Astrophysical Journal, 1999, 526, L41-L44.	4.5	73
53	Absorption spectroscopy of SiH2 near 640 nm. Journal of Chemical Physics, 1998, 108, 6249-6257.	3.0	43
54	The Stimulated Raman Spectrum of Cyanogen. Journal of Molecular Spectroscopy, 1997, 186, 144-154.	1.2	10

#	Article	IF	CITATIONS
55	The Force Field of Bromoform:Â A Theoretical and Experimental Investigation. The Journal of Physical Chemistry, 1996, 100, 16058-16065.	2.9	15
56	The $\hat{l}/21$ band of ketene. Journal of Chemical Physics, 1994, 101, 937-949.	3.0	19
57	Intensities and dipole moment derivatives of the fundamental bands of 35ClO2 and an intensity analysis of the \hat{l} /21 band. Journal of Molecular Spectroscopy, 1992, 156, 89-97.	1.2	9
58	The ground state constants of ketene. Journal of Molecular Spectroscopy, 1992, 156, 501-503.	1.2	35
59	The $\hat{1}/22$ and $\hat{1}/23$ bands and ground state constants of OClO. Journal of Molecular Spectroscopy, 1992, 155, 25-43.	1.2	26
60	ν6 and ν8 infrared bands and force field of disilane. Vibrational Spectroscopy, 1992, 4, 15-23.	2.2	1
61	Convergence properties of a pertubative treatment for Coriolis coupling in symmetric top molecules. Journal of Molecular Spectroscopy, 1991, 148, 136-148.	1.2	3
62	Infrared spectrum of monoisotopic germyl bromide in the 5 \hat{l} /4m region. Journal of Molecular Spectroscopy, 1991, 146, 83-96.	1.2	4
63	High-resolution infrared spectrum of the $\hat{l}/21$ band of OClO. Journal of Molecular Spectroscopy, 1991, 148, 346-370.	1.2	23
64	The ν2 and ν4 IR bands of SO3. Journal of Molecular Spectroscopy, 1989, 138, 602-613.	1,2	33
65	Spectroscopic constants for the $\hat{l}\frac{1}{2}$ 9 infrared band of HNO3. Journal of Molecular Spectroscopy, 1988, 131, 195-200.	1.2	48
66	Out-of-plane vibrational assignments and potential function of pyrrole and its deuterated derivatives. Journal of the Chemical Society, Faraday Transactions 2, 1985, 81, 653.	1.1	20