Keith C Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/385516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 1997, 24, 247-261.	1.7	1,142
2	Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 1998, 12, 699-714.	2.2	859
3	The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sensing of Environment, 2003, 86, 286-302.	4.6	783
4	Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 2008, 42, 11-37.	1.0	685
5	Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Computers, Environment and Urban Systems, 2021, 85, 101569.	3.3	484
6	The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses. Environment and Planning A, 2002, 34, 1443-1458.	2.1	474
7	The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 2005, 29, 369-399.	3.3	457
8	Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 2002, 26, 525-552.	3.3	396
9	Spatial Metrics and Image Texture for Mapping Urban Land Use. Photogrammetric Engineering and Remote Sensing, 2003, 69, 991-1001.	0.3	329
10	Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change, 2018, 8, 193-199.	8.1	327
11	Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers and Geosciences, 1986, 12, 713-722.	2.0	309
12	Spatioâ€ŧemporal dynamics in California's Central Valley: Empirical links to urban theory. International Journal of Geographical Information Science, 2005, 19, 175-195.	2.2	253
13	An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77, 21-30.	4.9	237
14	On Epidemiology and Geographic Information Systems: A Review and Discussion of Future Directions. Emerging Infectious Diseases, 1996, 2, 85-92.	2.0	225
15	The Use of Scenarios in Land-Use Planning. Environment and Planning B: Planning and Design, 2003, 30, 885-909.	1.7	197
16	Toward Optimal Calibration of the SLEUTH Land Use Change Model. Transactions in GIS, 2007, 11, 29.	1.0	192
17	Interactive Visual Exploration of a Large Spatio-temporal Dataset: Reflections on a Geovisualization Mashup IEEE Transactions on Visualization and Computer Graphics, 2007, 13, 1176-1183.	2.9	153
18	Diffusion and Coalescence of the Houston Metropolitan Area: Evidence Supporting a New Urban Theory. Environment and Planning B: Planning and Design, 2005, 32, 231-246.	1.7	129

#	Article	IF	CITATIONS
19	Modelling the impact of urban growth on agriculture and natural land in Italy to 2030. Applied Geography, 2018, 91, 156-167.	1.7	126
20	Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. International Journal of Applied Earth Observation and Geoinformation, 2014, 32, 67-78.	1.4	117
21	Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landscape and Urban Planning, 2016, 153, 11-27.	3.4	115
22	A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. International Journal of Geographical Information Science, 2010, 24, 695-722.	2.2	114
23	The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Computers, Environment and Urban Systems, 2006, 30, 78-101.	3.3	113
24	Using a cellular automaton model to forecast the effects of urban growth on habitat pattern in southern California. Ecological Complexity, 2005, 2, 185-203.	1.4	108
25	Guiding SLEUTH land-use/land-cover change modeling using multicriteria evaluation: towards dynamic sustainable land-use planning. Environment and Planning B: Planning and Design, 2012, 39, 925-944.	1.7	99
26	Extending the SLEUTH model to integrate habitat quality into urban growth simulation. Journal of Environmental Management, 2018, 217, 486-498.	3.8	98
27	Complexity, emergence and cellular urban models: lessons learned from applying SLEUTH to two Portuguese metropolitan areas. European Planning Studies, 2005, 13, 93-115.	1.6	95
28	Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change. International Journal of Geographical Information Science, 2019, 33, 1040-1061.	2.2	95
29	Testing Popular Visualization Techniques for Representing Model Uncertainty. Cartography and Geographic Information Science, 2003, 30, 249-261.	1.4	93
30	Impact of Urban Sprawl on Water Quality in Eastern Massachusetts, USA. Environmental Management, 2007, 40, 183-200.	1.2	93
31	Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Applied Geography, 2019, 108, 64-73.	1.7	90
32	Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecology, 2007, 22, 431-445.	1.9	89
33	Defining a Digital Earth System. Transactions in GIS, 2008, 12, 145-160.	1.0	86
34	Advances in Geographic Information Systems. Computers, Environment and Urban Systems, 1986, 10, 175-184.	3.3	79
35	An Artificial-Neural-Network-based, Constrained CA Model for Simulating Urban Growth. Cartography and Geographic Information Science, 2005, 32, 369-380.	1.4	75
36	Mixed-cell cellular automata: A new approach for simulating the spatio-temporal dynamics of mixed land use structures. Landscape and Urban Planning, 2021, 205, 103960.	3.4	65

#	Article	IF	CITATIONS
37	Radiometric measurements of gap probability in conifer tree canopies. Remote Sensing of Environment, 1990, 34, 179-192.	4.6	64
38	Population Density and Image Texture. Photogrammetric Engineering and Remote Sensing, 2006, 72, 187-196.	0.3	62
39	Forecasts of habitat loss and fragmentation due to urban growth are sensitive to source of input data. Journal of Environmental Management, 2011, 92, 1882-1893.	3.8	60
40	Spatiotemporal event detection: a review. International Journal of Digital Earth, 2020, 13, 1339-1365.	1.6	57
41	Converting Brazil's pastures to cropland: An alternative way to meet sugarcane demand and to spare forestlands. Applied Geography, 2015, 62, 75-84.	1.7	56
42	Satellite and ground-based microclimate and hydrologic analyses coupled with a regional urban growth model. Remote Sensing of Environment, 2003, 86, 385-400.	4.6	55
43	Multiâ€criteria evaluation and leastâ€cost path analysis for optimal haulage routing of dump trucks in large scale openâ€pit mines. International Journal of Geographical Information Science, 2009, 23, 1541-1567.	2.2	55
44	Measuring Urban Sprawl, Coalescence, and Dispersal: A Case Study of Pordenone, Italy. Environment and Planning B: Planning and Design, 2011, 38, 1085-1104.	1.7	55
45	The impact of historical exclusion on the calibration of the SLEUTH urban growth model. International Journal of Applied Earth Observation and Geoinformation, 2014, 27, 156-168.	1.4	54
46	Geocomputation's future at the extremes: high performance computing and nanoclients. Parallel Computing, 2003, 29, 1281-1295.	1.3	52
47	Temporal Accuracy in Urban Growth Forecasting: A Study Using the <scp>SLEUTH</scp> Model. Transactions in GIS, 2014, 18, 302-320.	1.0	52
48	Spatial Differences in Multi-Resolution Urban Automata Modeling. Transactions in GIS, 2004, 8, 479-492.	1.0	51
49	Mapping and Modelling Land Use Change: an Application of the SLEUTH Model. , 2008, , 353-366.		51
50	Assessing quality of urban underground spaces by coupling 3D geological models: The case study of Foshan city, South China. Computers and Geosciences, 2016, 89, 1-11.	2.0	49
51	Big Spatiotemporal Data Analytics: a research and innovation frontier. International Journal of Geographical Information Science, 2020, 34, 1075-1088.	2.2	48
52	Approaches to simulating the "March of Bricks and Mortar― Computers, Environment and Urban Systems, 2004, 28, 125-147.	3.3	46
53	A pattern-based definition of urban context using remote sensing and GIS. Remote Sensing of Environment, 2016, 183, 250-264.	4.6	44
54	Modeling Settlement Patterns of the Late Classic Maya Civilization with Bayesian Methods and Geographic Information Systems. Annals of the American Association of Geographers, 2009, 99, 496-520.	3.0	43

#	Article	IF	CITATIONS
55	Land use change and the carbon debt for sugarcane ethanol production in Brazil. Land Use Policy, 2018, 72, 65-73.	2.5	42
56	Assessing simulated land use/cover maps using similarity and fragmentation indices. Ecological Complexity, 2012, 11, 38-45.	1.4	41
57	ulating Hydrologic Impacts of Urban Growth Using SLEUTH, Multi Criteria Evaluation and Runoff Modeling. Journal of Environmental Informatics, 2013, 22, 27-38.	6.0	41
58	Interactive Tag Maps and Tag Clouds for the Multiscale Exploration of Large Spatio-temporal Datasets. Proceedings / International Conference on Information Visualisation, 2007, , .	0.0	40
59	The impact of urbanization and climate change on ecosystem services: A case study of the city belt along the Yellow River in Ningxia, China. Computers, Environment and Urban Systems, 2019, 77, 101351.	3.3	40
60	Revisiting the death of geography in the era of Big Data: the friction of distance in cyberspace and real space. International Journal of Digital Earth, 2018, 11, 451-469.	1.6	37
61	Symbolization of Map Projection Distortion: A Review. Cartography and Geographic Information Science, 2001, 28, 167-182.	1.4	34
62	Scale-Based Simulation of Topographic Relief. The American Cartographer, 1988, 15, 173-181.	0.2	33
63	Measuring the Fractal Dimension of Natural Surfaces Using a Robust Fractal Estimator. Cartography and Geographic Information Science, 1991, 18, 37-47.	1.1	33
64	Dynamics of spatial relationships among ecosystem services and their determinants: Implications for land use system reform in Northwestern China. Land Use Policy, 2021, 102, 105231.	2.5	33
65	The inclusion of differentially assessed lands in urban growth model calibration: a comparison of two approaches using SLEUTH. International Journal of Geographical Information Science, 2012, 26, 881-898.	2.2	32
66	Cellular Automata and Agent-Based Models. , 2014, , 1217-1233.		32
67	The Santa Barbara Oil Spill: A Retrospective. Yearbook of the Association of Pacific Coast Geographers, 2002, 64, 157-162.	0.1	31
68	Modeling an Indian megalopolis– A case study on adapting SLEUTH urban growth model. Computers, Environment and Urban Systems, 2019, 77, 101358.	3.3	31
69	The effectiveness of spawning habitat creation or enhancement for substrate-spawning temperate fish: a systematic review. Environmental Evidence, 2019, 8, .	1.1	31
70	Modeling the spatial patterns of human wildfire ignition in Yunnan province, China. Applied Geography, 2017, 89, 150-162.	1.7	30
71	Measuring and modeling the speed of human navigation. Cartography and Geographic Information Science, 2018, 45, 177-186.	1.4	30

The use of remote sensing and geographic information systems in UNICEF's dracunculiasis (Guinea) Tj ETQq0 0 0 rg B_{28}^{BJ} /Overlock 10 Tf 5

#	Article	IF	CITATIONS
73	On the Origins of Analytical Cartography. Cartography and Geographic Information Science, 2000, 27, 195-204.	1.4	28
74	Why simulate cities?. Geo Journal, 2014, 79, 129-136.	1.7	28
75	A meta-modeling approach for spatio-temporal uncertainty and sensitivity analysis: an application for a cellular automata-based Urban growth and land-use change model. International Journal of Geographical Information Science, 2018, 32, 637-662.	2.2	27
76	Contemporary American cartographic research: a review and prospective. Cartography and Geographic Information Science, 2019, 46, 196-209.	1.4	27
77	Indoor cartography. Cartography and Geographic Information Science, 2020, 47, 95-109.	1.4	26
78	Description et validation d'un modèle indépendant des trajectoires d'évolution passées pour simi des futurs contrastés de l'étalement urbain. CyberGeo, 0, , .	^{uler} o.o	26
79	Bonemapping: a LiDAR processing and visualization technique in support of archaeology under the canopy. Cartography and Geographic Information Science, 2015, 42, 18-26.	1.4	25
80	Monitoring forest cover change within different reserve types in southern Ghana. Environmental Monitoring and Assessment, 2019, 191, 281.	1.3	24
81	A comprehensive quality assessment framework for linear features from Volunteered Geographic Information. International Journal of Geographical Information Science, 0, , 1-22.	2.2	24
82	Mobile Mapping and Geographic Information Systems. Cartography and Geographic Information Science, 2004, 31, 131-136.	1.4	22
83	Toward accountable land use mapping: Using geocomputation to improve classification accuracy and reveal uncertainty. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 127-137.	1.4	22
84	Calibrating SLEUTH with big data: Projecting California's land use to 2100. Computers, Environment and Urban Systems, 2020, 83, 101525.	3.3	22
85	Replication of Spatio-temporal Land Use Patterns at Three Levels of Aggregation by an Urban Cellular Automata. Lecture Notes in Computer Science, 2004, , 523-532.	1.0	22
86	How does land use policy modify urban growth? A case study of the Italo-Slovenian border. Journal of Land Use Science, 2013, 8, 443-465.	1.0	21
87	Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities. PLoS ONE, 2015, 10, e0132464.	1.1	21
88	A multiscale masking method for point geographic data. International Journal of Geographical Information Science, 2016, 30, 300-315.	2.2	21
89	An automatic variogram modeling method with high reliability fitness and estimates. Computers and Geosciences, 2018, 120, 48-59.	2.0	21
90	An agent-based procedure with an embedded agent learning model for residential land growth simulation: The case study of Nanjing, China. Cities, 2019, 88, 155-165.	2.7	20

#	Article	IF	CITATIONS
91	A wavelet-based hybrid approach to remove the flicker noise and the white noise from GPS coordinate time series. GPS Solutions, 2015, 19, 511-523.	2.2	19
92	Patterns of land cover and land use change within the two major metropolitan areas of Ghana. Geocarto International, 2020, 35, 209-223.	1.7	19
93	Integrating spatial nonstationarity into SLEUTH for urban growth modeling: A case study in the Wuhan metropolitan area. Computers, Environment and Urban Systems, 2020, 84, 101545.	3.3	19
94	Privacy and False Identification Risk in Geomasking Techniques. Geographical Analysis, 2018, 50, 280-297.	1.9	18
95	Modeling the dynamics and walking accessibility of urban open spaces under various policy scenarios. Landscape and Urban Planning, 2021, 207, 103993.	3.4	18
96	Geospatial IT for mobile field data collection. Communications of the ACM, 2003, 46, 45-46.	3.3	17
97	Modeling the environmental susceptibility of landfill sites in California. GIScience and Remote Sensing, 2017, 54, 657-677.	2.4	17
98	Choosing the scale and extent of maps for navigation with mobile computing systems. Journal of Location Based Services, 2007, 1, 46-61.	1.4	15
99	Forecasting Enrollment in Differential Assessment Programs Using Cellular Automata. Environment and Planning B: Planning and Design, 2011, 38, 829-849.	1.7	15
100	On the topology of topography: a review. Cartography and Geographic Information Science, 2017, 44, 271-282.	1.4	15
101	The Limits of Simplicity. , 2004, , 215-232.		15
102	Fear, crime, and space: The case of Viçosa, Brazil. Applied Geography, 2013, 42, 124-132.	1.7	14
103	How do modern transportation projects impact on development of impervious surfaces via new urban area and urban intensification? Evidence from Hangzhou Bay Bridge, China. Land Use Policy, 2018, 77, 479-497.	2.5	14
104	Measuring Spatio-temporal Trends in Residential Landscape Irrigation Extent and Rate in Los Angeles, California Using SPOT-5 Satellite Imagery. Water Resources Management, 2015, 29, 5749-5763.	1.9	13
105	Outdoor Webcams as Geospatial Sensor Networks: Challenges, Issues and Opportunities. Cartography and Geographic Information Science, 2011, 38, 3-19.	1.4	12
106	Cartograms showing China's population and wealth distribution. Journal of Maps, 2012, 8, 320-323.	1.0	12
107	Image deblurring for satellite imagery using small-support-regularized deconvolution. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85, 148-155.	4.9	12
108	What is the World's Oldest Map?. Cartographic Journal, 2013, 50, 136-143.	0.8	12

#	Article	IF	CITATIONS
109	Perceptually Shaded Slope Maps for the Visualization of Digital Surface Models. Cartographica, 2014, 49, 225-240.	0.2	12
110	On the nature of models for time-sensitive remote sensing. International Journal of Remote Sensing, 2014, 35, 6815-6841.	1.3	12
111	Too Fine to be Good? Issues of Granularity, Uniformity and Error in Spatial Crime Analysis. Journal of Quantitative Criminology, 2021, 37, 419-443.	2.0	12
112	NSERC's HydroNet: A National Research Network to Promote Sustainable Hydropower and Healthy Aquatic Ecosystems. Fisheries, 2011, 36, 480-488.	0.6	11
113	The potential impacts of sprawl on farmland in Northeast China—Evaluating a new strategy for rural development. Landscape and Urban Planning, 2011, 104, 34-34.	3.4	11
114	On the Spatiotemporal Dynamics of the Coupling between Land Use and Road Networks: Does Political History Matter?. Environment and Planning B: Planning and Design, 2015, 42, 133-156.	1.7	11
115	Development of SLEUTH-Density for the simulation of built-up land density. Computers, Environment and Urban Systems, 2021, 86, 101586.	3.3	11
116	Maps and Mapping Technologies of the Persian Gulf War. Cartography and Geographic Information Science, 1992, 19, 80-87.	1.1	10
117	Mapping geological faults using image processing techniques applied to hill-shaded digital elevation models. , 0, , .		10
118	An improved fractal prediction model for forecasting mine slope deformation using GM (1, 1). Structural Health Monitoring, 2015, 14, 502-512.	4.3	10
119	Exploring uncertainties in terrain feature extraction across multi-scale, multi-feature, and multi-method approaches for variable terrain. Cartography and Geographic Information Science, 2018, 45, 381-399.	1.4	10
120	Knowledge graphs to support realâ€ŧime flood impact evaluation. Al Magazine, 2022, 43, 40-45.	1.4	10
121	Decreasing Computational Time of Urban Cellular Automata Through Model Portability. GeoInformatica, 2006, 10, 197-211.	2.0	9
122	Optimizing GPS-guidance transit route for cable crane collision avoidance using artificial immune algorithm. GPS Solutions, 2017, 21, 823-834.	2.2	9
123	Gross primary productivity of a large metropolitan region in midsummer using high spatial resolution satellite imagery. Urban Ecosystems, 2018, 21, 831-850.	1.1	9
124	Reshaping the urban hierarchy: patterns of information diffusion on social media. Geo-Spatial Information Science, 2019, 22, 149-165.	2.4	9
125	Spatial Resolution and Algorithm Choice as Modifiers of Downslope Flow Computed from Digital Elevation Models. Cartography and Geographic Information Science, 2007, 34, 215-230.	1.4	8
126	Mathematical Foundations of Cellular Automata and Complexity Theory. Modeling and Simulation in Science, Engineering and Technology, 2019, , 163-170.	0.4	8

#	Article	IF	CITATIONS
127	Data Quality in Massive Data Sets. Massive Computing, 2002, , 643-659.	0.4	8
128	Modeling Standards and File Formats for Indoor Mapping. , 2017, , .		8
129	Urban land growth in eastern China: a general analytical framework based on the role of urban micro-agents' adaptive behavior. Regional Environmental Change, 2015, 15, 695-707.	1.4	7
130	Simulating Land Use Change in the Seoul Metropolitan Area after Greenbelt Elimination Using the SLEUTH Model. Journal of Sensors, 2017, 2017, 1-18.	0.6	7
131	An area preserving method for improved categorical raster resampling. Cartography and Geographic Information Science, 2021, 48, 292-304.	1.4	7
132	Government digital cartographic data policy and environmental research needs. Computers, Environment and Urban Systems, 1994, 18, 95-101.	3.3	6
133	Please Enter Your Home Location: Geoprivacy Attitudes and Personal Location Masking Strategies of Internet Users. Annals of the American Association of Geographers, 2020, 110, 586-605.	1.5	6
134	GeoComputation in the Grid Computing Age. Lecture Notes in Computer Science, 2006, , 237-246.	1.0	6
135	The Impact of Data Time Span on Forecast Accuracy through Calibrating the SLEUTH Urban Growth Model. International Journal of Applied Geospatial Research, 2014, 5, 21-35.	0.2	6
136	Improving SLEUTH Calibration with a Genetic Algorithm. , 2017, , .		6
137	A New World Geographic Reference System. Cartography and Geographic Information Science, 2002, 29, 355-362.	1.4	5
138	Entropy-Based Weighting in One-Dimensional Multiple Errors Analysis of Geological Contacts to Model Geological Structure. Mathematical Geosciences, 2019, 51, 29-51.	1.4	5
139	Evacuation choice before and after major debris flows: The case of Montecito, CA. International Journal of Disaster Risk Reduction, 2021, 62, 102400.	1.8	5
140	Exploring the Fractal Mountains. , 1992, , 201-212.		5
141	Urban Sprawl and the Quantification of Spatial Dispersion. Advances in Geospatial Technologies Book Series, 2013, , 129-142.	0.1	5
142	Impacts of spatiotemporal resolution and tiling on SLEUTH model calibration and forecasting for urban areas with unregulated growth patterns. International Journal of Geographical Information Science, 2022, 36, 1037-1058.	2.2	5
143	Preface: A Perspective on GIS-environmental model intergration (GIS/EM). Journal of Environmental Management, 2000, 59, 229-233.	3.8	4
144	Exploring the Past and Future of Our Planet: Not Bit-by-Bit but All at Once. Professional Geographer, 2011, 63, 320-324.	1.0	4

#	Article	IF	CITATIONS
145	Map Projections and the Internet. Lecture Notes in Geoinformation and Cartography, 2017, , 117-148.	0.5	4
146	Modeling singular mineralization processes due to fluid pressure fluctuations. Chemical Geology, 2020, 535, 119458.	1.4	4
147	Remote Sensing and Urban Growth Theory. , 2006, , 201-219.		3
148	Chemometrical examination of active parameters and interactions in flow injection apillary electrophoresis. Electrophoresis, 2008, 29, 3779-3785.	1.3	3
149	Fertility and urban context: A case study from Ghana, West Africa, using remotely sensed imagery and GIS. Population, Space and Place, 2017, 23, e2062.	1.2	3
150	Animated Flow Maps for Visualizing Human Movement. , 2017, , .		3
151	Capturing the heterogeneity of urban growth in South Korea using a latent class regression model. Transactions in GIS, 2018, 22, 789-805.	1.0	3
152	A fractal model of granitic intrusion and variability based on cellular automata. Computers and Geosciences, 2019, 129, 40-48.	2.0	3
153	Using expert knowledge to map the level of risk of shallow landslides in Brazil. Natural Hazards, 2021, 108, 1701-1729.	1.6	3
154	SLEUTH Modeling Informed by Landscape Ecology Principles: Case Study Using Scenario-Based Planning in Sariyer, Istanbul, Turkey. Journal of the Urban Planning and Development Division, ASCE, 2021, 147, 05021043.	0.8	3
155	Geometric Rectification of Satellite Imagery with Minimal Ground Control Using Space Oblique Mercator Projection Theory. Cartography and Geographic Information Science, 2010, 37, 261-272.	1.4	2
156	Desertification in China's Horquin area: a multi-temporal land use change analysis. Journal of Land Use Science, 2011, 6, 53-73.	1.0	2
157	Is less more? Experimenting with visual stacking of coincident maps for spatial global sensitivity analysis in urban land-use change modeling. Environmental Modelling and Software, 2021, 145, 105181.	1.9	2
158	Development of a real-time testbed for studying demodulation techniques in a jamming environment. , 0, , .		1
159	The Department of Geography at the University of California, Santa Barbara: History, Curriculum, and Pedagogy. Yearbook of the Association of Pacific Coast Geographers, 2004, 66, 95-113.	0.1	1
160	Atmospheric releases during the 2003 glacier wildfires: Mapping, analysis and modeling. , 2012, , .		1
161	Waiting to Know the Future: A SLEUTH Model Forecast of Urban Growth with Real Data. Cartographica, 2012, 47, 250-258.	0.2	1
162	The space oblique conic projection. Cartography and Geographic Information Science, 2013, 40, 282-288.	1.4	1

#	Article	IF	CITATIONS
163	Combined approach of a couple fire model with atmospheric releases: the case of the 2003 Glacier wildfires. European Journal of Remote Sensing, 2014, 47, 181-193.	1.7	1
164	Can Engineers Lead Again?. Engineering, 2016, 2, 19-20.	3.2	1
165	Capturing the heterogeneity of urban growth in South Korea using a latent class regression model. Transactions in GIS, 2018, 22, 1325-1325.	1.0	1
166	Maps and Mapping Technologies of the Persian Gulf War. , 0, , 134-136.		1
167	The future for wool. Long Range Planning, 1975, 8, 70-74.	2.9	0
168	Flattening the Earth: Two Thousand Years of Map Projections. Geographical Review, 1994, 84, 490.	0.9	0
169	Guest Editorial: Selected Papers from the Fourth International Conference on Integrating Geographic Information Systems and Environmental Modeling (GIS/EM4). Transactions in GIS, 2000, 4, 177-180.	1.0	0
170	Report on the Sixty-Fourth Annual Meeting. Yearbook of the Association of Pacific Coast Geographers, 2002, 64, 171-174.	0.1	0
171	Dasymetric mapping with object-oriented classification and GIS. , 0, , .		0
172	Is the corporation killing engineering excellence?. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2006, 159, 171-177.	0.3	0
173	A tool to compute the landslide degree of risk using R-Studio and R-Shiny. , 2018, , .		0
174	Introduction to the Special Issue Commemorating Professor Waldo Tobler. Geographical Analysis, 2020, 52, 477-479.	1.9	0
175	Loose-Coupling a Cellular Automaton Model and GIS. , 2006, , 395-425.		0
176	1. On Scale in Space, Time, and Space–Time. , 2016, , 1-10.		0
177	GIS-based Computational Modeling. Geographic Information Science & Technology Body of Knowledge, 2019, 2019, .	0.1	0