
Mingjian Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3854884/publications.pdf Version: 2024-02-01

MINCHAN CHI

#	Article	IF	CITATIONS
1	Stability Assessment of Secondary Frequency Control System With Dynamic False Data Injection Attacks. IEEE Transactions on Industrial Informatics, 2022, 18, 3224-3234.	11.3	8
2	Privacy-Preserving Baseline Load Reconstruction for Residential Demand Response Considering Distributed Energy Resources. IEEE Transactions on Industrial Informatics, 2022, 18, 3541-3550.	11.3	10
3	Data-Driven Joint Voltage Stability Assessment Considering Load Uncertainty: A Variational Bayes Inference Integrated With Multi-CNNs. IEEE Transactions on Power Systems, 2022, 37, 1904-1915.	6.5	15
4	Deeply Hidden Moving-Target-Defense for Cybersecure Unbalanced Distribution Systems Considering Voltage Stability. IEEE Transactions on Power Systems, 2021, 36, 1961-1972.	6.5	33
5	Joint Probability Density Prediction for Multiperiod Thermal Ratings of Overhead Conductors. IEEE Transactions on Power Delivery, 2021, 36, 3022-3032.	4.3	9
6	Model-Free Emergency Frequency Control Based on Reinforcement Learning. IEEE Transactions on Industrial Informatics, 2021, 17, 2336-2346.	11.3	72
7	Online Optimization for Networked Distributed Energy Resources With Time-Coupling Constraints. IEEE Transactions on Smart Grid, 2021, 12, 251-267.	9.0	49
8	Multi-Period Fast Robust Optimization for Partial Distributed Generators (DGs) Providing Ancillary Services. Energies, 2021, 14, 4911.	3.1	1
9	Dynamic game-based defensive primary frequency control system considering intelligent attackers. Reliability Engineering and System Safety, 2021, 216, 107966.	8.9	7
10	Robustness and adaptability analysis for equivalent model of doubly fed induction generator wind farm using measured data. Applied Energy, 2020, 261, 114362.	10.1	32
11	Load altering attack-tolerant defense strategy for load frequency control system. Applied Energy, 2020, 280, 116015.	10.1	46
12	Optimal coordination of virtual power plant with photovoltaics and electric vehicles: A temporally coupled distributed online algorithm. Applied Energy, 2020, 277, 115583.	10.1	52
13	Parameters Identification of Equivalent Model of Permanent Magnet Synchronous Generator (PMSG) Wind Farm Based on Analysis of Trajectory Sensitivity. Energies, 2020, 13, 4607.	3.1	8
14	Flexible Machine Learning-Based Cyberattack Detection Using Spatiotemporal Patterns for Distribution Systems. IEEE Transactions on Smart Grid, 2020, 11, 1805-1808.	9.0	48
15	A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps. IEEE Transactions on Smart Grid, 2019, 10, 3870-3882.	9.0	53
16	A Novel Event Detection Method Using PMU Data With High Precision. IEEE Transactions on Power Systems, 2019, 34, 454-466.	6.5	66
17	Power Grid Reliability Evaluation Considering Wind Farm Cyber Security and Ramping Events. Applied Sciences (Switzerland), 2019, 9, 3003.	2.5	10
18	Generalized Graph Laplacian Based Anomaly Detection for Spatiotemporal MicroPMU Data. IEEE Transactions on Power Systems, 2019, 34, 3960-3963.	6.5	19

Mingjian Cui

#	Article	IF	CITATIONS
19	Robust Time-Varying Synthesis Load Modeling in Distribution Networks Considering Voltage Disturbances. IEEE Transactions on Power Systems, 2019, 34, 4438-4450.	6.5	30
20	Deep Learning-Based Time-Varying Parameter Identification for System-Wide Load Modeling. IEEE Transactions on Smart Grid, 2019, 10, 6102-6114.	9.0	69
21	Fast Solving Method Based on Linearized Equations of Branch Power Flow for Coordinated Charging of EVs (EVCC). IEEE Transactions on Vehicular Technology, 2019, 68, 4404-4418.	6.3	16
22	Energy-supported cascading failure model on interdependent networks considering control nodes. Physica A: Statistical Mechanics and Its Applications, 2019, 522, 195-204.	2.6	9
23	Optimal capacity planning of combined renewable energy source-pumped storage and seawater desalination systems. Global Energy Interconnection, 2019, 2, 310-317.	2.3	12
24	Characterizing forecastability of wind sites in the United States. Renewable Energy, 2019, 133, 1352-1365.	8.9	18
25	Unsupervised Clustering-Based Short-Term Solar Forecasting. IEEE Transactions on Sustainable Energy, 2019, 10, 2174-2185.	8.8	69
26	Multilevel Programming-Based Coordinated Cyber Physical Attacks and Countermeasures in Smart Grid. IEEE Access, 2019, 7, 9836-9847.	4.2	31
27	Machine Learning-Based Anomaly Detection for Load Forecasting Under Cyberattacks. IEEE Transactions on Smart Grid, 2019, 10, 5724-5734.	9.0	104
28	A Data-Driven Methodology for Probabilistic Wind Power Ramp Forecasting. IEEE Transactions on Smart Grid, 2019, 10, 1326-1338.	9.0	68
29	Advanced Control of DFIG to Enhance the Transient Voltage Support Capability. Journal of Energy Engineering - ASCE, 2018, 144, .	1.9	8
30	Total Supply Capacity of Electric-Gas Combined System Considering Distributed Renewable Generation. Journal of Energy Engineering - ASCE, 2018, 144, 04018018.	1.9	4
31	A Methodology for Quantifying Reliability Benefits From Improved Solar Power Forecasting in Multi-Timescale Power System Operations. IEEE Transactions on Smart Grid, 2018, 9, 6897-6908.	9.0	29
32	Statistical Representation of Wind Power Ramps Using a Generalized Gaussian Mixture Model. IEEE Transactions on Sustainable Energy, 2018, 9, 261-272.	8.8	45
33	Two Novel Load-Balancing Platforms Using Common DC Buses. IEEE Transactions on Sustainable Energy, 2018, 9, 1099-1107.	8.8	10
34	Surrogate Model-Based Energy-Efficient Scheduling for LPWA-Based Environmental Monitoring Systems. IEEE Access, 2018, 6, 59940-59948.	4.2	7
35	Estimating ramping requirements with solar-friendly flexible ramping product in multi-timescale power system operations. Applied Energy, 2018, 225, 27-41.	10.1	45
36	An Investigation of Coordinated Attack on Load Frequency Control. IEEE Access, 2018, 6, 30414-30423.	4.2	28

Mingjian Cui

 Applied Energy, 2017, 190, 1245-1257 Ramp forecasting performance from in spatial and temporal scales. Energy, 20 Characterizing and analyzing ramping Renewable Energy, 2017, 111, 227-24 	nproved short-term wind power forecasting over multiple D17, 122, 528-541. events in wind power, solar power, load, and netload. 4. ct Design in Multi-Timescale Power System Operations. IEEE D17, 8, 1064-1075. gramming for coordinated charging of electric vehicles.	10.1 8.8 8.9 8.8 5.4	253 61 61 69 6
 ³⁸ spatial and temporal scales. Energy, 20 ³⁹ Characterizing and analyzing ramping Renewable Energy, 2017, 111, 227-24 Wind-Friendly Flexible Ramping Product 	2017, 122, 528-541. events in wind power, solar power, load, and netload. 4. ct Design in Multi-Timescale Power System Operations. IEEE 2017, 8, 1064-1075. gramming for coordinated charging of electric vehicles. Clean Energy, 2017, 5, 1004-1015.	8.9 8.8	61 69
Wind-Friendly Flexible Ramping Produc	4. ct Design in Multi-Timescale Power System Operations. IEEE 017, 8, 1064-1075. gramming for coordinated charging of electric vehicles. Clean Energy, 2017, 5, 1004-1015.	8.8	69
	017, 8, 1064-1075. gramming for coordinated charging of electric vehicles. Clean Energy, 2017, 5, 1004-1015.		
	Clean Energy, 2017, 5, 1004-1015.	5.4	6
41 Primal dual interior point dynamic prog Journal of Modern Power Systems and	e forecasting based on sky imaging and pattern recognition. ,		
42 Short-term global horizontal irradiance 2017, , .			12
43 Probabilistic wind power ramp forecas	ting based on a scenario generation method. , 2017, , .		8
44 Comprehensive Reactive Power Suppo 2017, 10, 808.	rt of DFIG Adapted to Different Depth of Voltage Sags. Energies,	3.1	17
45 A truncated Gaussian mixture model fo	or distributions of wind power ramping features. , 2017, , .		3
A Chance-Constrained Economic Dispa 2017, 10, 326.	atch Model in Wind-Thermal-Energy Storage System. Energies,	3.1	17
47 Smart Charging of EVs in Residential D Energies, 2016, 9, 985.	istribution Systems Using the Extended Iterative Method.	3.1	7
48 Wind power ramping product for incre	easing power system flexibility. , 2016, , .		9
49 Economic dispatch of micro-grid basec	l on improved particle-swarm optimization algorithm. , 2016, , .		12
An Optimized Swinging Door Algorithr Sustainable Energy, 2016, 7, 150-162.	n for Identifying Wind Ramping Events. IEEE Transactions on	8.8	80
51 Solar Power Ramp Events Detection U	sing an Optimized Swinging Door Algorithm. , 2015, , .		9
52 An optimized swinging door algorithm	for wind power ramp event detection. , 2015, , .		17
53 Wind Power Ramp Event Forecasting L Transactions on Sustainable Energy, 20	Jsing a Stochastic Scenario Generation Method. IEEE 015, 6, 422-433.	8.8	134
54 Statistical scenarios forecasting metho networks. Journal of Modern Power Sy	od for wind power ramp events using modified neural stems and Clean Energy, 2015, 3, 371-380.	5.4	26

#	Article	IF	CITATIONS
55	Short term power forecasting of a wind farm based on atomic sparse decomposition theory. , 2012, , .		2
56	Application and Analysis of New Single Step Beat Control Based on Grey Forecasting and Control Theory in Active Power Filter. , 2012, , .		0