
Zhiming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3854801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction of sublimable pure organic ionic material with high solid luminescence efficiency based on anion-Ï€+ interactions tuning strategy. Chemical Engineering Journal, 2022, 433, 133646.	12.7	6
2	Tuning non-radiative decay channels <i>via</i> symmetric/asymmetric substituent effects on phenazine derivatives and their phototherapy switch between dynamic and thermal processes. Materials Chemistry Frontiers, 2022, 6, 316-324.	5.9	3
3	Adjusting and visualizing the stability of an acyl chloride through the delocalization effect and introducing AlEgens. Chemical Communications, 2022, 58, 5769-5772.	4.1	3
4	Aggregation-Induced Emission Luminogen-Based Dual-Mode Enzyme-Linked Immunosorbent Assay for Ultrasensitive Detection of Cancer Biomarkers in a Broad Concentration Range. ACS Sensors, 2022, 7, 766-774.	7.8	13
5	Efficient Ultraviolet Organic Light-Emitting Diodes with a CIEy of 0.04 and Negligible-Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2022, 14, 10627-10636.	8.0	19
6	Modulating LUMO extension of Spiro-junction TADF emitters for efficient OLEDs with relieved efficiency Roll-Off. Chemical Engineering Journal, 2022, 437, 135222.	12.7	17
7	Critical Role of Highâ€Lying Triplet States for Efficient Excitons Utilization in Highâ€Performance Nonâ€Doped Deepâ€Blue Fluorescent and Hybrid White Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	6
8	Photo-Enhanced Chemotherapy Performance in Bladder Cancer Treatment via Albumin Coated AIE Aggregates. ACS Nano, 2022, 16, 7535-7546.	14.6	37
9	Structural modification on tetraphenylpyrazine: from polarity enhanced emission to polarity quenching emission and its intramolecular charge transfer mechanism. Journal of Materials Chemistry C, 2022, 10, 8174-8180.	5.5	13
10	Size Optimization of Organic Nanoparticles with Aggregationâ€Induced Emission Characteristics for Improved ROS Generation and Photodynamic Cancer Cell Ablation. Small, 2022, 18, .	10.0	21
11	Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency. Journal of Materials Chemistry B, 2022, 10, 5272-5278.	5.8	12
12	Visualization of Mitochondria During Embryogenesis in Zebrafish by Aggregation-Induced Emission Molecules. Molecular Imaging and Biology, 2022, 24, 1007-1017.	2.6	1
13	Rapid membrane-specific AlEgen featuring with wash-free imaging and sensitive light-excited killing of cells, bacteria, and fungi. Materials Chemistry Frontiers, 2021, 5, 2724-2729.	5.9	8
14	Aggregation-enhanced emission in tetraphenylpyrazine-based luminogens: theoretical modulation and experimental validation. Materials Chemistry Frontiers, 2021, 5, 5012-5023.	5.9	10
15	Versatile Direct Cyclization Constructs Spiroâ€acridan Derivatives for Highly Efficient TADF emitters. Angewandte Chemie - International Edition, 2021, 60, 12376-12380.	13.8	45
16	A Feasible Strategy of Fabricating Type I Photosensitizer for Photodynamic Therapy in Cancer Cells and Pathogens. ACS Nano, 2021, 15, 7735-7743.	14.6	95
17	Cationic Tricyclic AlEgens for Concomitant Bacterial Discrimination and Inhibition. Advanced Healthcare Materials, 2021, 10, 2100136.	7.6	8
18	Genipin crosslinked gum arabic: Synthesis, characterization, and emulsification properties. Carbohydrate Polymers, 2021, 261, 117880.	10.2	26

#	Article	IF	CITATIONS
19	Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. ACS Nano, 2021, 15, 9924-9934.	14.6	27
20	Tunable Intramolecular Charge Transfer Effect on Diphenylpyrazineâ€Based Linear Derivatives and Their Expected Performance in Blue Emitters. Advanced Optical Materials, 2021, 9, 2101085.	7.3	12
21	Highâ€Performance Ultraviolet Organic Lightâ€Emitting Diode Enabled by High‣ying Reverse Intersystem Crossing. Angewandte Chemie, 2021, 133, 22415-22421.	2.0	10
22	Highâ€Performance Ultraviolet Organic Lightâ€Emitting Diode Enabled by High‣ying Reverse Intersystem Crossing. Angewandte Chemie - International Edition, 2021, 60, 22241-22247.	13.8	68
23	Bright near-infrared aggregation-induced emission dots for long-term bioimaging in vitro/vivo. Dyes and Pigments, 2021, 195, 109679.	3.7	8
24	Side by Side Alignment of Donors Enabling Highâ€Efficiency TADF OLEDs with Insensitivity to Doping Concentration. Advanced Optical Materials, 2021, 9, 2101410.	7.3	10
25	Trojan Horseâ€Like Nanoâ€AlE Aggregates Based on Homologous Targeting Strategy and Their Photodynamic Therapy in Anticancer Application. Advanced Science, 2021, 8, e2102561.	11.2	46
26	Predictable luminescence performance of polyphenylpyrazine derivatives based on a theoretical model <i>via</i> hole–electron overlap. Journal of Materials Chemistry C, 2021, 9, 16619-16625.	5.5	2
27	Tetraphenylbenzosilole: An AIE Building Block for Deep-Blue Emitters with High Performance in Nondoped Spin-Coating OLEDs. Journal of Organic Chemistry, 2020, 85, 158-167.	3.2	26
28	Structural Modification Orientated Multifunctional AIE Fluorescence Probes: Organelles Imaging and Effective Photosensitizer for Photodynamic Therapy. Advanced Optical Materials, 2020, 8, 1901433.	7.3	31
29	Keto-salicylaldehyde azine: asymmetric substituent effect on their optical properties <i>via</i> electron-donating group insertion. Journal of Materials Chemistry C, 2020, 8, 996-1001.	5.5	15
30	Exploration of High Efficiency AlEâ€Active Deep/Nearâ€Infrared Red Emitters in OLEDs with Highâ€Radiance. Advanced Optical Materials, 2020, 8, 1901520.	7.3	72
31	Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS Nano, 2020, 14, 854-866.	14.6	161
32	Uncommon Intramolecular Charge Transfer Effect and Its Potential Application in OLED Emitters. Chemical Research in Chinese Universities, 2020, 36, 61-67.	2.6	8
33	Aggregation-Induced Electrochemiluminescence of Tetraphenylbenzosilole Derivatives in an Aqueous Phase System for Ultrasensitive Detection of Hexavalent Chromium. Analytical Chemistry, 2020, 92, 14838-14845.	6.5	32
34	Luminescent two-way reversible shape memory polymers prepared by hydroxyl–yne click polymerization. Journal of Materials Chemistry C, 2020, 8, 16121-16128.	5.5	17
35	Which is a better fluorescent sensor: aggregation-induced emission-based nanofibers or thin-coating films?. Materials Advances, 2020, 1, 574-578.	5.4	9
36	Photoactivatable dihydroalkaloids for cancer cell imaging and chemotherapy with high spatiotemporal resolution. Materials Horizons, 2020, 7, 2696-2701.	12.2	24

#	Article	IF	CITATIONS
37	Molecular Motions in AlEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding. Journal of the American Chemical Society, 2020, 142, 14608-14618.	13.7	62
38	Molecular Engineering to Boost AlEâ€Active Free Radical Photogenerators and Enable Highâ€Performance Photodynamic Therapy under Hypoxia. Advanced Functional Materials, 2020, 30, 2002057.	14.9	208
39	Photo-induced crystallization with emission enhancement (PICEE). Materials Horizons, 2020, 7, 3005-3010.	12.2	11
40	Facile fabrication of self-shrinkable AIE supramolecular gels based on benzophenone salicylaldehyde hydrazine derivatives. Journal of Materials Chemistry C, 2020, 8, 13705-13711.	5.5	9
41	Delicate modulation of triplet energy levels for activating "hot excitons―channels in deep red AlEgens. Journal of Materials Chemistry C, 2020, 8, 14146-14154.	5.5	16
42	Keto-salicylaldehyde azine: a kind of novel building block for AIEgens and its application in tracking lipid droplets. Materials Chemistry Frontiers, 2020, 4, 3094-3102.	5.9	11
43	Achievement of Highâ€Performance Nondoped Blue OLEDs Based on AlEgens via Construction of Effective Highâ€Lying Chargeâ€Transfer State. Advanced Optical Materials, 2020, 8, 1902195.	7.3	29
44	A Multifunctional Blueâ€Emitting Material Designed via Tuning Distribution of Hybridized Excitedâ€6tate for Highâ€Performance Blue and Hostâ€6ensitized OLEDs. Advanced Functional Materials, 2020, 30, 2002323.	14.9	108
45	Planarized intramolecular charge transfer on triphenylamine-modified pyrazine and its application in organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 4754-4762.	5.5	21
46	Aggregation-induced emission luminogen for specific identification of malignant tumour in vivo. Science China Chemistry, 2020, 63, 393-397.	8.2	9
47	Each phenyl group performs its own functions on luminescence: phenyl substituted effect in tetraphenylpyrazine. Materials Chemistry Frontiers, 2020, 4, 1706-1713.	5.9	14
48	Tetraphenylpyrazine decorated 1,3-di(9 <i>H</i> -carbazol-9-yl)benzene (mCP): a new AIE-active host with enhanced performance in organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 11160-11166.	5.5	10
49	Visualizing Dynamic Performance of Lipid Droplets in a Parkinson's Disease Model via a Smart Photostable Aggregation-Induced Emission Probe. IScience, 2019, 21, 261-272.	4.1	22
50	Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. Journal of Materials Chemistry C, 2019, 7, 330-339.	5.5	42
51	Novel Strategy for Constructing High Efficiency OLED Emitters with Excited State Quinoneâ€Conformation Induced Planarization Process. Advanced Optical Materials, 2019, 7, 1900283.	7.3	34
52	Creation of Efficient Blue Aggregation-Induced Emission Luminogens for High-Performance Nondoped Blue OLEDs and Hybrid White OLEDs. ACS Applied Materials & Interfaces, 2019, 11, 17592-17601.	8.0	93
53	Feasible structure-modification strategy for inhibiting aggregation-caused quenching effect and constructing exciton conversion channels in acridone-based emitters. Physical Chemistry Chemical Physics, 2019, 21, 9837-9844.	2.8	20
54	Synergistic tuning of the optical and electrical performance of AIEgens with a hybridized local and charge-transfer excited state. Journal of Materials Chemistry C, 2019, 7, 6359-6368.	5.5	82

#	Article	IF	CITATIONS
55	Intriguing "chameleon―fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomaterials, 2019, 203, 43-51.	11.4	61
56	Fluorescent aggregation-induced emission (AIE)-based thermosetting electrospun nanofibers: fabrication, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2491-2498.	5.9	46
57	Triphenylpyrazine: methyl substitution to achieve deep blue AIE emitters. Journal of Materials Chemistry C, 2019, 7, 13047-13051.	5.5	17
58	A Photostable AIEgen for Specific and Realâ€ŧime Monitoring of Lysosomal Processes. Chemistry - an Asian Journal, 2019, 14, 1662-1666.	3.3	16
59	Dual-Mode Ultrasensitive Detection of Nucleic Acids via an Aqueous "Seesaw―Strategy by Combining Aggregation-Induced Emission and Plasmonic Colorimetry. ACS Applied Nano Materials, 2019, 2, 163-169.	5.0	8
60	Tetraphenylpyrazine Based AIE Luminogens: Unique Excited State Decay and Its Application in Deepâ€Blue Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1801673.	7.3	33
61	Tetraphenylpyrazine-based luminogens with full-colour emission. Materials Chemistry Frontiers, 2018, 2, 1310-1316.	5.9	44
62	Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. Science China Chemistry, 2018, 61, 76-87.	8.2	51
63	Materials interaction in aggregation-induced emission (AIE)-based fluorescent resin for smart coatings. Journal of Materials Chemistry C, 2018, 6, 12849-12857.	5.5	57
64	Selective and sensitive fluorescent probes for metal ions based on AIE dots in aqueous media. Journal of Materials Chemistry C, 2018, 6, 11261-11265.	5.5	29
65	Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AlEgen. Biomaterials, 2018, 187, 47-54.	11.4	73
66	Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions. ACS Sensors, 2018, 3, 2218-2222.	7.8	42
67	Sulfur-bridged tetraphenylethylene AIEgens for deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 6534-6542.	5.5	30
68	Multiplexed imaging detection of live cell intracellular changes in early apoptosis with aggregation-induced emission fluorogens. Science China Chemistry, 2018, 61, 892-897.	8.2	29
69	Efficient Bipolar Blue AlEgens for Highâ€Performance Nondoped Blue OLEDs and Hybrid White OLEDs. Advanced Functional Materials, 2018, 28, 1803369.	14.9	130
70	Theoretical investigation of high-efficiency organic electroluminescent material: HLCT state and hot exciton process. RSC Advances, 2017, 7, 19576-19583.	3.6	48
71	Preparation of 9,10-diarylphenanthrene derivative and its application in full color emitters synthesis. Chemical Research in Chinese Universities, 2017, 33, 574-580.	2.6	1
72	Specific Fluorescence Probes for Lipid Droplets Based on Simple AlEgens. ACS Applied Materials & Interfaces, 2016, 8, 10193-10200.	8.0	132

#	Article	IF	CITATIONS
73	A Lysosomeâ€Targeting AlEgen for Autophagy Visualization. Advanced Healthcare Materials, 2016, 5, 427-431.	7.6	65
74	Towards stable deep-blue emission and low efficiency roll-off in OLEDs based on phenanthroimidazole dimers. Journal of Materials Chemistry C, 2016, 4, 1886-1894.	5.5	40
75	Synthesis and application of functionalized ionic liquids as solvent to corn stalk for phenolic resin modification. E-Polymers, 2015, 15, 195-201.	3.0	7
76	Isomers of Pyrene–Imidazole Compounds: Synthesis and Configuration Effect on Optical Properties. Organic Letters, 2015, 17, 6138-6141.	4.6	47
77	Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasiâ€Equivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762.	14.9	381
78	Synthesis of polyether imidazole ionic liquid and its modification on polypropylene crystal structure and mechanical properties. E-Polymers, 2015, 15, 33-37.	3.0	2
79	The effect of meta coupling on colour purity, quantum yield, and exciton utilizing efficiency in deep-blue emitters from phenanthroimidazole isomers. Physical Chemistry Chemical Physics, 2015, 17, 31894-31901.	2.8	15
80	Dimeric phenanthroimidazole for blue electroluminescent materials: the effect of substituted position attached to biphenyl center. Physical Chemistry Chemical Physics, 2014, 16, 10837-10843.	2.8	54
81	Construction of high efficiency non-doped deep blue emitters based on phenanthroimidazole: remarkable substitution effects on the excited state properties and device performance. Physical Chemistry Chemical Physics, 2014, 16, 20772-20779.	2.8	65
82	High-efficiency deep blue fluorescent emitters based on phenanthro[9,10-d]imidazole substituted carbazole and their applications in organic light emitting diodes. Organic Electronics, 2014, 15, 2667-2676.	2.6	94
83	A triphenylamine-capped solution-processable wholly aromatic organic molecule with electrochemical stability and its potential application in photovoltaic devices. New Journal of Chemistry, 2013, 37, 2440.	2.8	23
84	Efficient Solid Emitters with Aggregation-Induced Emission and Intramolecular Charge Transfer Characteristics: Molecular Design, Synthesis, Photophysical Behaviors, and OLED Application. Chemistry of Materials, 2012, 24, 1518-1528.	6.7	472
85	A Twisting Donorâ€Acceptor Molecule with an Intercrossed Excited State for Highly Efficient, Deepâ€Blue Electroluminescence. Advanced Functional Materials, 2012, 22, 2797-2803.	14.9	614
86	Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials. Journal of Materials Chemistry, 2011, 21, 5451.	6.7	229
87	Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. Chemical Communications, 2011, 47, 8847.	4.1	175
88	Pyrene-substituted ethenes: aggregation-enhanced excimer emission and highly efficient electroluminescence. Journal of Materials Chemistry, 2011, 21, 7210.	6.7	206
89	Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chemical Science, 2011, 2, 672-675.	7.4	216
90	Changing the Behavior of Chromophores from Aggregation aused Quenching to Aggregationâ€Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Advanced Materials, 2010, 22, 2159-2163.	21.0	834

#	Article	IF	CITATIONS
91	Precise modulation of the triplet state distribution for high-efficiency non-doped standard saturated red OLEDs. Journal of Materials Chemistry C, 0, , .	5.5	8
92	Efficient thermally activated delayed fluorescence emitters based on a parallelly aligned bi-spiro-acridine donor. Journal of Materials Chemistry C, 0, , .	5.5	3